-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
89 lines (67 loc) · 2.46 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import warnings
warnings.filterwarnings('ignore')
from tensorflow.keras.models import load_model
import nltk
from tensorflow.keras.preprocessing.sequence import pad_sequences
import numpy as np
import pickle
import os
from flask import Flask, request, render_template, url_for, redirect, jsonify
from flask_cors import CORS, cross_origin
app = Flask(__name__)
CORS(app)
nltk.download('stopwords')
nltk.download('punkt')
def loadModels(model_path, encoder_path):
model_path = os.path.join(model_path,"model.h5")
encoder_path = os.path.join(encoder_path,"tokenizer.tk")
model = load_model(model_path)
with open(encoder_path, 'rb') as pickle_file:
encoder = pickle.load(pickle_file)
return model, encoder
def preprocessing(par):
stop_words = set(nltk.corpus.stopwords.words("english"))
tokenizer = nltk.tokenize.RegexpTokenizer(r'\w+')
tmp = []
sentences = nltk.sent_tokenize(par)
for sent in sentences:
sent = sent.lower()
tokens = tokenizer.tokenize(sent)
filtered_words = [w.strip() for w in tokens if w not in stop_words and len(w) > 1]
tmp.extend(filtered_words)
return tmp
def transform(X, maxlen, encoder):
tmp = np.array(X)
tmp = tmp.reshape(1, tmp.shape[0])
X = encoder.texts_to_sequences(tmp.tolist())
return pad_sequences(X, maxlen)
def predict_news(txt, maxlen, clf_model, clf_encoder):
X = preprocessing(txt)
X = transform(X, maxlen, clf_encoder)
y = clf_model.predict(X)
if y > 0.5:
return "Real"
else:
return "Fake"
@app.route('/')
def home():
return render_template("index.html")
@app.route('/covid', methods=['GET', 'POST'])
def covid_func():
if request.method == 'POST':
return redirect(url_for('home'))
return render_template("covid.html")
@app.route("/predict", methods=['POST'])
def predict():
model, encoder = loadModels('models', 'models')
#model, encoder = loadModels('E:\\New folder\\Fake-Local\\models', 'E:\\New folder\\Fake-Local\\models')
req = request.form
news = req.get("searchtxt")
prediction = predict_news(str(news), 256, model, encoder)
if prediction:
response = {'btnMessage': 'News is {}'.format(prediction)}
else:
response = {'btnMessage': 'News is {}'.format(prediction)}
return jsonify(response), 200
if __name__ == "__main__":
app.run(debug=True)