|
| 1 | +/////////////////////////////////////////////////////////////////////// |
| 2 | +// File: matrix_test.cc |
| 3 | +// Author: [email protected] (Ray Smith) |
| 4 | +// |
| 5 | +// Copyright 2016 Google Inc. All Rights Reserved. |
| 6 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | +// you may not use this file except in compliance with the License. |
| 8 | +// You may obtain a copy of the License at |
| 9 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +// Unless required by applicable law or agreed to in writing, software |
| 11 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +// See the License for the specific language governing permissions and |
| 14 | +// limitations under the License. |
| 15 | +/////////////////////////////////////////////////////////////////////// |
| 16 | + |
| 17 | +#include "matrix.h" |
| 18 | +#include "gunit.h" |
| 19 | +#include "genericvector.h" |
| 20 | +#include "tprintf.h" |
| 21 | + |
| 22 | +namespace { |
| 23 | + |
| 24 | +class MatrixTest : public ::testing::Test { |
| 25 | + protected: |
| 26 | + // Fills src_ with data so it can pretend to be a tensor thus: |
| 27 | + // dims_=[5, 4, 3, 2] |
| 28 | + // array_=[0, 1, 2, ....119] |
| 29 | + // tensor=[[[[0, 1][2, 3][4, 5]] |
| 30 | + // [[6, 7][8, 9][10, 11]] |
| 31 | + // [[12, 13][14, 15][16, 17]] |
| 32 | + // [[18, 19][20, 21][22, 23]]] |
| 33 | + // [[[24, 25]... |
| 34 | + MatrixTest() { |
| 35 | + src_.Resize(1, kInputSize_, 0); |
| 36 | + for (int i = 0; i < kInputSize_; ++i) { |
| 37 | + src_.put(0, i, i); |
| 38 | + } |
| 39 | + for (int i = 0; i < kNumDims_; ++i) dims_[i] = 5 - i; |
| 40 | + } |
| 41 | + // Number of dimensions in src_. |
| 42 | + static const int kNumDims_ = 4; |
| 43 | + // Number of elements in src_. |
| 44 | + static const int kInputSize_ = 120; |
| 45 | + // Size of each dimension in src_; |
| 46 | + int dims_[kNumDims_]; |
| 47 | + // Input array filled with [0,kInputSize). |
| 48 | + GENERIC_2D_ARRAY<int> src_; |
| 49 | +}; |
| 50 | + |
| 51 | +// Tests that the RotatingTranspose function does the right thing for various |
| 52 | +// transformations. |
| 53 | +// dims=[5, 4, 3, 2]->[5, 2, 4, 3] |
| 54 | +TEST_F(MatrixTest, RotatingTranspose_3_1) { |
| 55 | + GENERIC_2D_ARRAY<int> m; |
| 56 | + src_.RotatingTranspose(dims_, kNumDims_, 3, 1, &m); |
| 57 | + m.ResizeNoInit(kInputSize_ / 3, 3); |
| 58 | + // Verify that the result is: |
| 59 | + // output tensor=[[[[0, 2, 4][6, 8, 10][12, 14, 16][18, 20, 22]] |
| 60 | + // [[1, 3, 5][7, 9, 11][13, 15, 17][19, 21, 23]]] |
| 61 | + // [[[24, 26, 28]... |
| 62 | + EXPECT_EQ(0, m(0, 0)); |
| 63 | + EXPECT_EQ(2, m(0, 1)); |
| 64 | + EXPECT_EQ(4, m(0, 2)); |
| 65 | + EXPECT_EQ(6, m(1, 0)); |
| 66 | + EXPECT_EQ(1, m(4, 0)); |
| 67 | + EXPECT_EQ(24, m(8, 0)); |
| 68 | + EXPECT_EQ(26, m(8, 1)); |
| 69 | + EXPECT_EQ(25, m(12, 0)); |
| 70 | +} |
| 71 | + |
| 72 | +// dims=[5, 4, 3, 2]->[3, 5, 4, 2] |
| 73 | +TEST_F(MatrixTest, RotatingTranspose_2_0) { |
| 74 | + GENERIC_2D_ARRAY<int> m; |
| 75 | + src_.RotatingTranspose(dims_, kNumDims_, 2, 0, &m); |
| 76 | + m.ResizeNoInit(kInputSize_ / 2, 2); |
| 77 | + // Verify that the result is: |
| 78 | + // output tensor=[[[[0, 1][6, 7][12, 13][18, 19]] |
| 79 | + // [[24, 25][30, 31][36, 37][42, 43]] |
| 80 | + // [[48, 49][54, 55][60, 61][66, 67]] |
| 81 | + // [[72, 73][78, 79][84, 85][90, 91]] |
| 82 | + // [[96, 97][102, 103][108, 109][114, 115]]] |
| 83 | + // [[[2,3]... |
| 84 | + EXPECT_EQ(0, m(0, 0)); |
| 85 | + EXPECT_EQ(1, m(0, 1)); |
| 86 | + EXPECT_EQ(6, m(1, 0)); |
| 87 | + EXPECT_EQ(7, m(1, 1)); |
| 88 | + EXPECT_EQ(24, m(4, 0)); |
| 89 | + EXPECT_EQ(25, m(4, 1)); |
| 90 | + EXPECT_EQ(30, m(5, 0)); |
| 91 | + EXPECT_EQ(2, m(20, 0)); |
| 92 | +} |
| 93 | + |
| 94 | +// dims=[5, 4, 3, 2]->[5, 3, 2, 4] |
| 95 | +TEST_F(MatrixTest, RotatingTranspose_1_3) { |
| 96 | + GENERIC_2D_ARRAY<int> m; |
| 97 | + src_.RotatingTranspose(dims_, kNumDims_, 1, 3, &m); |
| 98 | + m.ResizeNoInit(kInputSize_ / 4, 4); |
| 99 | + // Verify that the result is: |
| 100 | + // output tensor=[[[[0, 6, 12, 18][1, 7, 13, 19]] |
| 101 | + // [[2, 8, 14, 20][3, 9, 15, 21]] |
| 102 | + // [[4, 10, 16, 22][5, 11, 17, 23]]] |
| 103 | + // [[[24, 30, 36, 42]... |
| 104 | + EXPECT_EQ(0, m(0, 0)); |
| 105 | + EXPECT_EQ(6, m(0, 1)); |
| 106 | + EXPECT_EQ(1, m(1, 0)); |
| 107 | + EXPECT_EQ(2, m(2, 0)); |
| 108 | + EXPECT_EQ(3, m(3, 0)); |
| 109 | + EXPECT_EQ(4, m(4, 0)); |
| 110 | + EXPECT_EQ(5, m(5, 0)); |
| 111 | + EXPECT_EQ(24, m(6, 0)); |
| 112 | + EXPECT_EQ(30, m(6, 1)); |
| 113 | +} |
| 114 | + |
| 115 | +// dims=[5, 4, 3, 2]->[4, 3, 5, 2] |
| 116 | +TEST_F(MatrixTest, RotatingTranspose_0_2) { |
| 117 | + GENERIC_2D_ARRAY<int> m; |
| 118 | + src_.RotatingTranspose(dims_, kNumDims_, 0, 2, &m); |
| 119 | + m.ResizeNoInit(kInputSize_ / 2, 2); |
| 120 | + // Verify that the result is: |
| 121 | + // output tensor=[[[[0, 1][24, 25][48, 49][72, 73][96, 97]] |
| 122 | + // [[2, 3][26, 27][50, 51][74, 75][98, 99]] |
| 123 | + // [[4, 5][28, 29][52, 53][76, 77][100, 101]]] |
| 124 | + // [[[6, 7]... |
| 125 | + EXPECT_EQ(0, m(0, 0)); |
| 126 | + EXPECT_EQ(1, m(0, 1)); |
| 127 | + EXPECT_EQ(24, m(1, 0)); |
| 128 | + EXPECT_EQ(25, m(1, 1)); |
| 129 | + EXPECT_EQ(96, m(4, 0)); |
| 130 | + EXPECT_EQ(97, m(4, 1)); |
| 131 | + EXPECT_EQ(2, m(5, 0)); |
| 132 | + EXPECT_EQ(6, m(15, 0)); |
| 133 | +} |
| 134 | + |
| 135 | +} // namespace |
0 commit comments