-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathapp.py
865 lines (745 loc) · 33 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
import streamlit as st
import asyncio
import nest_asyncio
import json
import os
import platform
if platform.system() == "Windows":
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
# Apply nest_asyncio: Allow nested calls within an already running event loop
nest_asyncio.apply()
# Create and reuse global event loop (create once and continue using)
if "event_loop" not in st.session_state:
loop = asyncio.new_event_loop()
st.session_state.event_loop = loop
asyncio.set_event_loop(loop)
from langgraph.prebuilt import create_react_agent
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from dotenv import load_dotenv
from langchain_mcp_adapters.client import MultiServerMCPClient
from utils import astream_graph, random_uuid
from langchain_core.messages.ai import AIMessageChunk
from langchain_core.messages.tool import ToolMessage
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.runnables import RunnableConfig
# Load environment variables (get API keys and settings from .env file)
load_dotenv(override=True)
# config.json file path setting
CONFIG_FILE_PATH = "config.json"
# Function to load settings from JSON file
def load_config_from_json():
"""
Loads settings from config.json file.
Creates a file with default settings if it doesn't exist.
Returns:
dict: Loaded settings
"""
default_config = {
"get_current_time": {
"command": "python",
"args": ["./mcp_server_time.py"],
"transport": "stdio"
}
}
try:
if os.path.exists(CONFIG_FILE_PATH):
with open(CONFIG_FILE_PATH, "r", encoding="utf-8") as f:
return json.load(f)
else:
# Create file with default settings if it doesn't exist
save_config_to_json(default_config)
return default_config
except Exception as e:
st.error(f"Error loading settings file: {str(e)}")
return default_config
# Function to save settings to JSON file
def save_config_to_json(config):
"""
Saves settings to config.json file.
Args:
config (dict): Settings to save
Returns:
bool: Save success status
"""
try:
with open(CONFIG_FILE_PATH, "w", encoding="utf-8") as f:
json.dump(config, f, indent=2, ensure_ascii=False)
return True
except Exception as e:
st.error(f"Error saving settings file: {str(e)}")
return False
# Initialize login session variables
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
# Check if login is required
use_login = os.environ.get("USE_LOGIN", "false").lower() == "true"
# Change page settings based on login status
if use_login and not st.session_state.authenticated:
# Login page uses default (narrow) layout
st.set_page_config(page_title="Agent with MCP Tools", page_icon="🧠")
else:
# Main app uses wide layout
st.set_page_config(page_title="Agent with MCP Tools", page_icon="🧠", layout="wide")
# Display login screen if login feature is enabled and not yet authenticated
if use_login and not st.session_state.authenticated:
st.title("🔐 Login")
st.markdown("Login is required to use the system.")
# Place login form in the center of the screen with narrow width
with st.form("login_form"):
username = st.text_input("Username")
password = st.text_input("Password", type="password")
submit_button = st.form_submit_button("Login")
if submit_button:
expected_username = os.environ.get("USER_ID")
expected_password = os.environ.get("USER_PASSWORD")
if username == expected_username and password == expected_password:
st.session_state.authenticated = True
st.success("✅ Login successful! Please wait...")
st.rerun()
else:
st.error("❌ Username or password is incorrect.")
# Don't display the main app on the login screen
st.stop()
# Add author information at the top of the sidebar (placed before other sidebar elements)
st.sidebar.markdown("### ✍️ Made by [TeddyNote](https://youtube.com/c/teddynote) 🚀")
st.sidebar.markdown(
"### 💻 [Project Page](https://github.com/teddynote-lab/langgraph-mcp-agents)"
)
st.sidebar.divider() # Add divider
# Existing page title and description
st.title("💬 MCP Tool Utilization Agent")
st.markdown("✨ Ask questions to the ReAct agent that utilizes MCP tools.")
SYSTEM_PROMPT = """<ROLE>
You are a smart agent with an ability to use tools.
You will be given a question and you will use the tools to answer the question.
Pick the most relevant tool to answer the question.
If you are failed to answer the question, try different tools to get context.
Your answer should be very polite and professional.
</ROLE>
----
<INSTRUCTIONS>
Step 1: Analyze the question
- Analyze user's question and final goal.
- If the user's question is consist of multiple sub-questions, split them into smaller sub-questions.
Step 2: Pick the most relevant tool
- Pick the most relevant tool to answer the question.
- If you are failed to answer the question, try different tools to get context.
Step 3: Answer the question
- Answer the question in the same language as the question.
- Your answer should be very polite and professional.
Step 4: Provide the source of the answer(if applicable)
- If you've used the tool, provide the source of the answer.
- Valid sources are either a website(URL) or a document(PDF, etc).
Guidelines:
- If you've used the tool, your answer should be based on the tool's output(tool's output is more important than your own knowledge).
- If you've used the tool, and the source is valid URL, provide the source(URL) of the answer.
- Skip providing the source if the source is not URL.
- Answer in the same language as the question.
- Answer should be concise and to the point.
- Avoid response your output with any other information than the answer and the source.
</INSTRUCTIONS>
----
<OUTPUT_FORMAT>
(concise answer to the question)
**Source**(if applicable)
- (source1: valid URL)
- (source2: valid URL)
- ...
</OUTPUT_FORMAT>
"""
OUTPUT_TOKEN_INFO = {
"claude-3-5-sonnet-latest": {"max_tokens": 8192},
"claude-3-5-haiku-latest": {"max_tokens": 8192},
"claude-3-7-sonnet-latest": {"max_tokens": 64000},
"gpt-4o": {"max_tokens": 16000},
"gpt-4o-mini": {"max_tokens": 16000},
}
# Initialize session state
if "session_initialized" not in st.session_state:
st.session_state.session_initialized = False # Session initialization flag
st.session_state.agent = None # Storage for ReAct agent object
st.session_state.history = [] # List for storing conversation history
st.session_state.mcp_client = None # Storage for MCP client object
st.session_state.timeout_seconds = (
120 # Response generation time limit (seconds), default 120 seconds
)
st.session_state.selected_model = (
"claude-3-7-sonnet-latest" # Default model selection
)
st.session_state.recursion_limit = 100 # Recursion call limit, default 100
if "thread_id" not in st.session_state:
st.session_state.thread_id = random_uuid()
# --- Function Definitions ---
async def cleanup_mcp_client():
"""
Safely terminates the existing MCP client.
Properly releases resources if an existing client exists.
"""
if "mcp_client" in st.session_state and st.session_state.mcp_client is not None:
try:
await st.session_state.mcp_client.__aexit__(None, None, None)
st.session_state.mcp_client = None
except Exception as e:
import traceback
# st.warning(f"Error while terminating MCP client: {str(e)}")
# st.warning(traceback.format_exc())
def print_message():
"""
Displays chat history on the screen.
Distinguishes between user and assistant messages on the screen,
and displays tool call information within the assistant message container.
"""
i = 0
while i < len(st.session_state.history):
message = st.session_state.history[i]
if message["role"] == "user":
st.chat_message("user", avatar="🧑💻").markdown(message["content"])
i += 1
elif message["role"] == "assistant":
# Create assistant message container
with st.chat_message("assistant", avatar="🤖"):
# Display assistant message content
st.markdown(message["content"])
# Check if the next message is tool call information
if (
i + 1 < len(st.session_state.history)
and st.session_state.history[i + 1]["role"] == "assistant_tool"
):
# Display tool call information in the same container as an expander
with st.expander("🔧 Tool Call Information", expanded=False):
st.markdown(st.session_state.history[i + 1]["content"])
i += 2 # Increment by 2 as we processed two messages together
else:
i += 1 # Increment by 1 as we only processed a regular message
else:
# Skip assistant_tool messages as they are handled above
i += 1
def get_streaming_callback(text_placeholder, tool_placeholder):
"""
Creates a streaming callback function.
This function creates a callback function to display responses generated from the LLM in real-time.
It displays text responses and tool call information in separate areas.
Args:
text_placeholder: Streamlit component to display text responses
tool_placeholder: Streamlit component to display tool call information
Returns:
callback_func: Streaming callback function
accumulated_text: List to store accumulated text responses
accumulated_tool: List to store accumulated tool call information
"""
accumulated_text = []
accumulated_tool = []
def callback_func(message: dict):
nonlocal accumulated_text, accumulated_tool
message_content = message.get("content", None)
if isinstance(message_content, AIMessageChunk):
content = message_content.content
# If content is in list form (mainly occurs in Claude models)
if isinstance(content, list) and len(content) > 0:
message_chunk = content[0]
# Process text type
if message_chunk["type"] == "text":
accumulated_text.append(message_chunk["text"])
text_placeholder.markdown("".join(accumulated_text))
# Process tool use type
elif message_chunk["type"] == "tool_use":
if "partial_json" in message_chunk:
accumulated_tool.append(message_chunk["partial_json"])
else:
tool_call_chunks = message_content.tool_call_chunks
tool_call_chunk = tool_call_chunks[0]
accumulated_tool.append(
"\n```json\n" + str(tool_call_chunk) + "\n```\n"
)
with tool_placeholder.expander(
"🔧 Tool Call Information", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if tool_calls attribute exists (mainly occurs in OpenAI models)
elif (
hasattr(message_content, "tool_calls")
and message_content.tool_calls
and len(message_content.tool_calls[0]["name"]) > 0
):
tool_call_info = message_content.tool_calls[0]
accumulated_tool.append("\n```json\n" + str(tool_call_info) + "\n```\n")
with tool_placeholder.expander(
"🔧 Tool Call Information", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if content is a simple string
elif isinstance(content, str):
accumulated_text.append(content)
text_placeholder.markdown("".join(accumulated_text))
# Process if invalid tool call information exists
elif (
hasattr(message_content, "invalid_tool_calls")
and message_content.invalid_tool_calls
):
tool_call_info = message_content.invalid_tool_calls[0]
accumulated_tool.append("\n```json\n" + str(tool_call_info) + "\n```\n")
with tool_placeholder.expander(
"🔧 Tool Call Information (Invalid)", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if tool_call_chunks attribute exists
elif (
hasattr(message_content, "tool_call_chunks")
and message_content.tool_call_chunks
):
tool_call_chunk = message_content.tool_call_chunks[0]
accumulated_tool.append(
"\n```json\n" + str(tool_call_chunk) + "\n```\n"
)
with tool_placeholder.expander(
"🔧 Tool Call Information", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if tool_calls exists in additional_kwargs (supports various model compatibility)
elif (
hasattr(message_content, "additional_kwargs")
and "tool_calls" in message_content.additional_kwargs
):
tool_call_info = message_content.additional_kwargs["tool_calls"][0]
accumulated_tool.append("\n```json\n" + str(tool_call_info) + "\n```\n")
with tool_placeholder.expander(
"🔧 Tool Call Information", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if it's a tool message (tool response)
elif isinstance(message_content, ToolMessage):
accumulated_tool.append(
"\n```json\n" + str(message_content.content) + "\n```\n"
)
with tool_placeholder.expander("🔧 Tool Call Information", expanded=True):
st.markdown("".join(accumulated_tool))
return None
return callback_func, accumulated_text, accumulated_tool
async def process_query(query, text_placeholder, tool_placeholder, timeout_seconds=60):
"""
Processes user questions and generates responses.
This function passes the user's question to the agent and streams the response in real-time.
Returns a timeout error if the response is not completed within the specified time.
Args:
query: Text of the question entered by the user
text_placeholder: Streamlit component to display text responses
tool_placeholder: Streamlit component to display tool call information
timeout_seconds: Response generation time limit (seconds)
Returns:
response: Agent's response object
final_text: Final text response
final_tool: Final tool call information
"""
try:
if st.session_state.agent:
streaming_callback, accumulated_text_obj, accumulated_tool_obj = (
get_streaming_callback(text_placeholder, tool_placeholder)
)
try:
response = await asyncio.wait_for(
astream_graph(
st.session_state.agent,
{"messages": [HumanMessage(content=query)]},
callback=streaming_callback,
config=RunnableConfig(
recursion_limit=st.session_state.recursion_limit,
thread_id=st.session_state.thread_id,
),
),
timeout=timeout_seconds,
)
except asyncio.TimeoutError:
error_msg = f"⏱️ Request time exceeded {timeout_seconds} seconds. Please try again later."
return {"error": error_msg}, error_msg, ""
final_text = "".join(accumulated_text_obj)
final_tool = "".join(accumulated_tool_obj)
return response, final_text, final_tool
else:
return (
{"error": "🚫 Agent has not been initialized."},
"🚫 Agent has not been initialized.",
"",
)
except Exception as e:
import traceback
error_msg = f"❌ Error occurred during query processing: {str(e)}\n{traceback.format_exc()}"
return {"error": error_msg}, error_msg, ""
async def initialize_session(mcp_config=None):
"""
Initializes MCP session and agent.
Args:
mcp_config: MCP tool configuration information (JSON). Uses default settings if None
Returns:
bool: Initialization success status
"""
with st.spinner("🔄 Connecting to MCP server..."):
# First safely clean up existing client
await cleanup_mcp_client()
if mcp_config is None:
# Load settings from config.json file
mcp_config = load_config_from_json()
client = MultiServerMCPClient(mcp_config)
await client.__aenter__()
tools = client.get_tools()
st.session_state.tool_count = len(tools)
st.session_state.mcp_client = client
# Initialize appropriate model based on selection
selected_model = st.session_state.selected_model
if selected_model in [
"claude-3-7-sonnet-latest",
"claude-3-5-sonnet-latest",
"claude-3-5-haiku-latest",
]:
model = ChatAnthropic(
model=selected_model,
temperature=0.1,
max_tokens=OUTPUT_TOKEN_INFO[selected_model]["max_tokens"],
)
else: # Use OpenAI model
model = ChatOpenAI(
model=selected_model,
temperature=0.1,
max_tokens=OUTPUT_TOKEN_INFO[selected_model]["max_tokens"],
)
agent = create_react_agent(
model,
tools,
checkpointer=MemorySaver(),
prompt=SYSTEM_PROMPT,
)
st.session_state.agent = agent
st.session_state.session_initialized = True
return True
# --- Sidebar: System Settings Section ---
with st.sidebar:
st.subheader("⚙️ System Settings")
# Model selection feature
# Create list of available models
available_models = []
# Check Anthropic API key
has_anthropic_key = os.environ.get("ANTHROPIC_API_KEY") is not None
if has_anthropic_key:
available_models.extend(
[
"claude-3-7-sonnet-latest",
"claude-3-5-sonnet-latest",
"claude-3-5-haiku-latest",
]
)
# Check OpenAI API key
has_openai_key = os.environ.get("OPENAI_API_KEY") is not None
if has_openai_key:
available_models.extend(["gpt-4o", "gpt-4o-mini"])
# Display message if no models are available
if not available_models:
st.warning(
"⚠️ API keys are not configured. Please add ANTHROPIC_API_KEY or OPENAI_API_KEY to your .env file."
)
# Add Claude model as default (to show UI even without keys)
available_models = ["claude-3-7-sonnet-latest"]
# Model selection dropdown
previous_model = st.session_state.selected_model
st.session_state.selected_model = st.selectbox(
"🤖 Select model to use",
options=available_models,
index=(
available_models.index(st.session_state.selected_model)
if st.session_state.selected_model in available_models
else 0
),
help="Anthropic models require ANTHROPIC_API_KEY and OpenAI models require OPENAI_API_KEY to be set as environment variables.",
)
# Notify when model is changed and session needs to be reinitialized
if (
previous_model != st.session_state.selected_model
and st.session_state.session_initialized
):
st.warning(
"⚠️ Model has been changed. Click 'Apply Settings' button to apply changes."
)
# Add timeout setting slider
st.session_state.timeout_seconds = st.slider(
"⏱️ Response generation time limit (seconds)",
min_value=60,
max_value=300,
value=st.session_state.timeout_seconds,
step=10,
help="Set the maximum time for the agent to generate a response. Complex tasks may require more time.",
)
st.session_state.recursion_limit = st.slider(
"⏱️ Recursion call limit (count)",
min_value=10,
max_value=200,
value=st.session_state.recursion_limit,
step=10,
help="Set the recursion call limit. Setting too high a value may cause memory issues.",
)
st.divider() # Add divider
# Tool settings section
st.subheader("🔧 Tool Settings")
# Manage expander state in session state
if "mcp_tools_expander" not in st.session_state:
st.session_state.mcp_tools_expander = False
# MCP tool addition interface
with st.expander("🧰 Add MCP Tools", expanded=st.session_state.mcp_tools_expander):
# Load settings from config.json file
loaded_config = load_config_from_json()
default_config_text = json.dumps(loaded_config, indent=2, ensure_ascii=False)
# Create pending config based on existing mcp_config_text if not present
if "pending_mcp_config" not in st.session_state:
try:
st.session_state.pending_mcp_config = loaded_config
except Exception as e:
st.error(f"Failed to set initial pending config: {e}")
# UI for adding individual tools
st.subheader("Add Tool(JSON format)")
st.markdown(
"""
Please insert **ONE tool** in JSON format.
[How to Set Up?](https://teddylee777.notion.site/MCP-Tool-Setup-Guide-English-1d324f35d1298030a831dfb56045906a)
⚠️ **Important**: JSON must be wrapped in curly braces (`{}`).
"""
)
# Provide clearer example
example_json = {
"github": {
"command": "npx",
"args": [
"-y",
"@smithery/cli@latest",
"run",
"@smithery-ai/github",
"--config",
'{"githubPersonalAccessToken":"your_token_here"}',
],
"transport": "stdio",
}
}
default_text = json.dumps(example_json, indent=2, ensure_ascii=False)
new_tool_json = st.text_area(
"Tool JSON",
default_text,
height=250,
)
# Add button
if st.button(
"Add Tool",
type="primary",
key="add_tool_button",
use_container_width=True,
):
try:
# Validate input
if not new_tool_json.strip().startswith(
"{"
) or not new_tool_json.strip().endswith("}"):
st.error("JSON must start and end with curly braces ({}).")
st.markdown('Correct format: `{ "tool_name": { ... } }`')
else:
# Parse JSON
parsed_tool = json.loads(new_tool_json)
# Check if it's in mcpServers format and process accordingly
if "mcpServers" in parsed_tool:
# Move contents of mcpServers to top level
parsed_tool = parsed_tool["mcpServers"]
st.info(
"'mcpServers' format detected. Converting automatically."
)
# Check number of tools entered
if len(parsed_tool) == 0:
st.error("Please enter at least one tool.")
else:
# Process all tools
success_tools = []
for tool_name, tool_config in parsed_tool.items():
# Check URL field and set transport
if "url" in tool_config:
# Set transport to "sse" if URL exists
tool_config["transport"] = "sse"
st.info(
f"URL detected in '{tool_name}' tool, setting transport to 'sse'."
)
elif "transport" not in tool_config:
# Set default "stdio" if URL doesn't exist and transport isn't specified
tool_config["transport"] = "stdio"
# Check required fields
if (
"command" not in tool_config
and "url" not in tool_config
):
st.error(
f"'{tool_name}' tool configuration requires either 'command' or 'url' field."
)
elif "command" in tool_config and "args" not in tool_config:
st.error(
f"'{tool_name}' tool configuration requires 'args' field."
)
elif "command" in tool_config and not isinstance(
tool_config["args"], list
):
st.error(
f"'args' field in '{tool_name}' tool must be an array ([]) format."
)
else:
# Add tool to pending_mcp_config
st.session_state.pending_mcp_config[tool_name] = (
tool_config
)
success_tools.append(tool_name)
# Success message
if success_tools:
if len(success_tools) == 1:
st.success(
f"{success_tools[0]} tool has been added. Click 'Apply Settings' button to apply."
)
else:
tool_names = ", ".join(success_tools)
st.success(
f"Total {len(success_tools)} tools ({tool_names}) have been added. Click 'Apply Settings' button to apply."
)
# Collapse expander after adding
st.session_state.mcp_tools_expander = False
st.rerun()
except json.JSONDecodeError as e:
st.error(f"JSON parsing error: {e}")
st.markdown(
f"""
**How to fix**:
1. Check that your JSON format is correct.
2. All keys must be wrapped in double quotes (").
3. String values must also be wrapped in double quotes (").
4. When using double quotes within a string, they must be escaped (\\").
"""
)
except Exception as e:
st.error(f"Error occurred: {e}")
# Display registered tools list and add delete buttons
with st.expander("📋 Registered Tools List", expanded=True):
try:
pending_config = st.session_state.pending_mcp_config
except Exception as e:
st.error("Not a valid MCP tool configuration.")
else:
# Iterate through keys (tool names) in pending config
for tool_name in list(pending_config.keys()):
col1, col2 = st.columns([8, 2])
col1.markdown(f"- **{tool_name}**")
if col2.button("Delete", key=f"delete_{tool_name}"):
# Delete tool from pending config (not applied immediately)
del st.session_state.pending_mcp_config[tool_name]
st.success(
f"{tool_name} tool has been deleted. Click 'Apply Settings' button to apply."
)
st.divider() # Add divider
# --- Sidebar: System Information and Action Buttons Section ---
with st.sidebar:
st.subheader("📊 System Information")
st.write(
f"🛠️ MCP Tools Count: {st.session_state.get('tool_count', 'Initializing...')}"
)
selected_model_name = st.session_state.selected_model
st.write(f"🧠 Current Model: {selected_model_name}")
# Move Apply Settings button here
if st.button(
"Apply Settings",
key="apply_button",
type="primary",
use_container_width=True,
):
# Display applying message
apply_status = st.empty()
with apply_status.container():
st.warning("🔄 Applying changes. Please wait...")
progress_bar = st.progress(0)
# Save settings
st.session_state.mcp_config_text = json.dumps(
st.session_state.pending_mcp_config, indent=2, ensure_ascii=False
)
# Save settings to config.json file
save_result = save_config_to_json(st.session_state.pending_mcp_config)
if not save_result:
st.error("❌ Failed to save settings file.")
progress_bar.progress(15)
# Prepare session initialization
st.session_state.session_initialized = False
st.session_state.agent = None
# Update progress
progress_bar.progress(30)
# Run initialization
success = st.session_state.event_loop.run_until_complete(
initialize_session(st.session_state.pending_mcp_config)
)
# Update progress
progress_bar.progress(100)
if success:
st.success("✅ New settings have been applied.")
# Collapse tool addition expander
if "mcp_tools_expander" in st.session_state:
st.session_state.mcp_tools_expander = False
else:
st.error("❌ Failed to apply settings.")
# Refresh page
st.rerun()
st.divider() # Add divider
# Action buttons section
st.subheader("🔄 Actions")
# Reset conversation button
if st.button("Reset Conversation", use_container_width=True, type="primary"):
# Reset thread_id
st.session_state.thread_id = random_uuid()
# Reset conversation history
st.session_state.history = []
# Notification message
st.success("✅ Conversation has been reset.")
# Refresh page
st.rerun()
# Show logout button only if login feature is enabled
if use_login and st.session_state.authenticated:
st.divider() # Add divider
if st.button("Logout", use_container_width=True, type="secondary"):
st.session_state.authenticated = False
st.success("✅ You have been logged out.")
st.rerun()
# --- Initialize default session (if not initialized) ---
if not st.session_state.session_initialized:
st.info(
"MCP server and agent are not initialized. Please click the 'Apply Settings' button in the left sidebar to initialize."
)
# --- Print conversation history ---
print_message()
# --- User input and processing ---
user_query = st.chat_input("💬 Enter your question")
if user_query:
if st.session_state.session_initialized:
st.chat_message("user", avatar="🧑💻").markdown(user_query)
with st.chat_message("assistant", avatar="🤖"):
tool_placeholder = st.empty()
text_placeholder = st.empty()
resp, final_text, final_tool = (
st.session_state.event_loop.run_until_complete(
process_query(
user_query,
text_placeholder,
tool_placeholder,
st.session_state.timeout_seconds,
)
)
)
if "error" in resp:
st.error(resp["error"])
else:
st.session_state.history.append({"role": "user", "content": user_query})
st.session_state.history.append(
{"role": "assistant", "content": final_text}
)
if final_tool.strip():
st.session_state.history.append(
{"role": "assistant_tool", "content": final_tool}
)
st.rerun()
else:
st.warning(
"⚠️ MCP server and agent are not initialized. Please click the 'Apply Settings' button in the left sidebar to initialize."
)