forked from allenai/allennlp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrained_transformer_tokenizer_test.py
362 lines (330 loc) · 12.2 KB
/
pretrained_transformer_tokenizer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from typing import Iterable, List
import pytest
from allennlp.common import Params
from allennlp.common.testing import AllenNlpTestCase
from allennlp.data import Token
from allennlp.data.tokenizers import PretrainedTransformerTokenizer
class TestPretrainedTransformerTokenizer(AllenNlpTestCase):
def test_splits_roberta(self):
tokenizer = PretrainedTransformerTokenizer("roberta-base")
sentence = "A, <mask> AllenNLP sentence."
expected_tokens = [
"<s>",
"A",
",",
"<mask>",
"ĠAllen",
"N",
"LP",
"Ġsentence",
".",
"</s>",
]
tokens = [t.text for t in tokenizer.tokenize(sentence)]
assert tokens == expected_tokens
def test_splits_cased_bert(self):
tokenizer = PretrainedTransformerTokenizer("bert-base-cased")
sentence = "A, [MASK] AllenNLP sentence."
expected_tokens = [
"[CLS]",
"A",
",",
"[MASK]",
"Allen",
"##NL",
"##P",
"sentence",
".",
"[SEP]",
]
tokens = [t.text for t in tokenizer.tokenize(sentence)]
assert tokens == expected_tokens
def test_splits_uncased_bert(self):
sentence = "A, [MASK] AllenNLP sentence."
expected_tokens = [
"[CLS]",
"a",
",",
"[MASK]",
"allen",
"##nl",
"##p",
"sentence",
".",
"[SEP]",
]
tokenizer = PretrainedTransformerTokenizer("bert-base-uncased")
tokens = [t.text for t in tokenizer.tokenize(sentence)]
assert tokens == expected_tokens
def test_splits_reformer_small(self):
sentence = "A, [MASK] AllenNLP sentence."
expected_tokens = [
"▁A",
",",
"▁",
"<unk>",
"M",
"A",
"S",
"K",
"<unk>",
"▁A",
"ll",
"en",
"N",
"L",
"P",
"▁s",
"ent",
"en",
"ce",
".",
]
tokenizer = PretrainedTransformerTokenizer("google/reformer-crime-and-punishment")
tokens = [t.text for t in tokenizer.tokenize(sentence)]
assert tokens == expected_tokens
def test_token_idx_bert_uncased(self):
sentence = "A, naïve [MASK] AllenNLP sentence."
expected_tokens = [
"[CLS]",
"a",
",",
"naive", # BERT normalizes this away
"[MASK]",
"allen",
"##nl",
"##p",
"sentence",
".",
"[SEP]",
]
expected_idxs = [None, 0, 1, 3, 9, 16, 21, 23, 25, 33, None]
tokenizer = PretrainedTransformerTokenizer("bert-base-uncased")
tokenized = tokenizer.tokenize(sentence)
tokens = [t.text for t in tokenized]
assert tokens == expected_tokens
idxs = [t.idx for t in tokenized]
assert idxs == expected_idxs
def test_token_idx_bert_cased(self):
sentence = "A, naïve [MASK] AllenNLP sentence."
expected_tokens = [
"[CLS]",
"A",
",",
"na",
"##ï",
"##ve",
"[MASK]",
"Allen",
"##NL",
"##P",
"sentence",
".",
"[SEP]",
]
expected_idxs = [None, 0, 1, 3, 5, 6, 9, 16, 21, 23, 25, 33, None]
tokenizer = PretrainedTransformerTokenizer("bert-base-cased")
tokenized = tokenizer.tokenize(sentence)
tokens = [t.text for t in tokenized]
assert tokens == expected_tokens
idxs = [t.idx for t in tokenized]
assert idxs == expected_idxs
def test_max_length(self):
tokenizer = PretrainedTransformerTokenizer(
"bert-base-cased", max_length=10, add_special_tokens=False
)
tokens = tokenizer.tokenize(
"hi there, this should be at least 10 tokens, but some will be truncated"
)
assert len(tokens) == 10
def test_no_max_length(self):
tokenizer = PretrainedTransformerTokenizer(
"bert-base-cased", max_length=None, add_special_tokens=False
)
# Even though the bert model has a max input length of 512, when we tokenize
# with `max_length = None`, we should not get any truncation.
tokens = tokenizer.tokenize(" ".join(["a"] * 550))
assert len(tokens) == 550
def test_token_idx_roberta(self):
sentence = "A, naïve <mask> AllenNLP sentence."
expected_tokens = [
"<s>",
"A",
",",
"Ġnaïve", # RoBERTa mangles this. Or maybe it "encodes"?
"<mask>",
"ĠAllen",
"N",
"LP",
"Ġsentence",
".",
"</s>",
]
expected_idxs = [None, 0, 1, 3, 9, 16, 21, 22, 25, 33, None]
tokenizer = PretrainedTransformerTokenizer("roberta-base")
tokenized = tokenizer.tokenize(sentence)
tokens = [t.text for t in tokenized]
assert tokens == expected_tokens
idxs = [t.idx for t in tokenized]
assert idxs == expected_idxs
def test_token_idx_wikipedia(self):
sentence = (
"Tokyo (東京 Tōkyō, English: /ˈtoʊkioʊ/,[7] Japanese: [toːkʲoː]), officially "
"Tokyo Metropolis (東京都 Tōkyō-to), is one of the 47 prefectures of Japan."
)
for tokenizer_name in ["roberta-base", "bert-base-uncased", "bert-base-cased"]:
tokenizer = PretrainedTransformerTokenizer(tokenizer_name)
tokenized = tokenizer.tokenize(sentence)
assert tokenized[-2].text == "."
assert tokenized[-2].idx == len(sentence) - 1
def test_intra_word_tokenize(self):
tokenizer = PretrainedTransformerTokenizer("bert-base-cased")
sentence = "A, [MASK] AllenNLP sentence.".split(" ")
expected_tokens = [
"[CLS]",
"A",
",",
"[MASK]",
"Allen",
"##NL",
"##P",
"sentence",
".",
"[SEP]",
]
expected_offsets = [(1, 2), (3, 3), (4, 6), (7, 8)]
tokens, offsets = tokenizer.intra_word_tokenize(sentence)
tokens = [t.text for t in tokens]
assert tokens == expected_tokens
assert offsets == expected_offsets
# sentence pair
sentence_1 = "A, [MASK] AllenNLP sentence.".split(" ")
sentence_2 = "A sentence.".split(" ")
expected_tokens = [
"[CLS]",
"A",
",",
"[MASK]",
"Allen",
"##NL",
"##P",
"sentence",
".",
"[SEP]",
"A", # 10
"sentence",
".",
"[SEP]",
]
expected_offsets_a = [(1, 2), (3, 3), (4, 6), (7, 8)]
expected_offsets_b = [(10, 10), (11, 12)]
tokens, offsets_a, offsets_b = tokenizer.intra_word_tokenize_sentence_pair(
sentence_1, sentence_2
)
tokens = [t.text for t in tokens]
assert tokens == expected_tokens
assert offsets_a == expected_offsets_a
assert offsets_b == expected_offsets_b
def test_intra_word_tokenize_whitespaces(self):
tokenizer = PretrainedTransformerTokenizer("bert-base-cased")
sentence = ["A,", " ", "[MASK]", "AllenNLP", "\u007f", "sentence."]
expected_tokens = [
"[CLS]",
"A",
",",
"[MASK]",
"Allen",
"##NL",
"##P",
"sentence",
".",
"[SEP]",
]
expected_offsets = [(1, 2), None, (3, 3), (4, 6), None, (7, 8)]
tokens, offsets = tokenizer.intra_word_tokenize(sentence)
tokens = [t.text for t in tokens]
assert tokens == expected_tokens
assert offsets == expected_offsets
def test_special_tokens_added(self):
def get_token_ids(tokens: Iterable[Token]) -> List[int]:
return [t.text_id for t in tokens]
def get_type_ids(tokens: Iterable[Token]) -> List[int]:
return [t.type_id for t in tokens]
tokenizer = PretrainedTransformerTokenizer("bert-base-cased")
assert get_token_ids(tokenizer.sequence_pair_start_tokens) == [101]
assert get_token_ids(tokenizer.sequence_pair_mid_tokens) == [102]
assert get_token_ids(tokenizer.sequence_pair_end_tokens) == [102]
assert get_token_ids(tokenizer.single_sequence_start_tokens) == [101]
assert get_token_ids(tokenizer.single_sequence_end_tokens) == [102]
assert get_type_ids(tokenizer.sequence_pair_start_tokens) == [0]
assert tokenizer.sequence_pair_first_token_type_id == 0
assert get_type_ids(tokenizer.sequence_pair_mid_tokens) == [0]
assert tokenizer.sequence_pair_second_token_type_id == 1
assert get_type_ids(tokenizer.sequence_pair_end_tokens) == [1]
assert get_type_ids(tokenizer.single_sequence_start_tokens) == [0]
assert tokenizer.single_sequence_token_type_id == 0
assert get_type_ids(tokenizer.single_sequence_end_tokens) == [0]
tokenizer = PretrainedTransformerTokenizer("xlnet-base-cased")
assert get_token_ids(tokenizer.sequence_pair_start_tokens) == []
assert get_token_ids(tokenizer.sequence_pair_mid_tokens) == [4]
assert get_token_ids(tokenizer.sequence_pair_end_tokens) == [4, 3]
assert get_token_ids(tokenizer.single_sequence_start_tokens) == []
assert get_token_ids(tokenizer.single_sequence_end_tokens) == [4, 3]
assert get_type_ids(tokenizer.sequence_pair_start_tokens) == []
assert tokenizer.sequence_pair_first_token_type_id == 0
assert get_type_ids(tokenizer.sequence_pair_mid_tokens) == [0]
assert tokenizer.sequence_pair_second_token_type_id == 1
assert get_type_ids(tokenizer.sequence_pair_end_tokens) == [1, 2]
assert get_type_ids(tokenizer.single_sequence_start_tokens) == []
assert tokenizer.single_sequence_token_type_id == 0
assert get_type_ids(tokenizer.single_sequence_end_tokens) == [0, 2]
def test_tokenizer_kwargs_default(self):
text = "Hello there! General Kenobi."
tokenizer = PretrainedTransformerTokenizer("bert-base-cased")
original_tokens = [
"[CLS]",
"Hello",
"there",
"!",
"General",
"Ken",
"##ob",
"##i",
".",
"[SEP]",
]
tokenized = [token.text for token in tokenizer.tokenize(text)]
assert tokenized == original_tokens
def test_from_params_kwargs(self):
PretrainedTransformerTokenizer.from_params(
Params({"model_name": "bert-base-uncased", "tokenizer_kwargs": {"max_len": 10}})
)
def test_to_params(self):
tokenizer = PretrainedTransformerTokenizer.from_params(
Params({"model_name": "bert-base-uncased", "tokenizer_kwargs": {"max_len": 10}})
)
params = tokenizer.to_params()
assert isinstance(params, Params)
assert params.params == {
"type": "pretrained_transformer",
"model_name": "bert-base-uncased",
"add_special_tokens": True,
"max_length": None,
"tokenizer_kwargs": {"max_len": 10, "use_fast": True},
}
def test_initialize_tokenizer_with_verification_tokens(self):
model_name = "roberta-base"
PretrainedTransformerTokenizer(
model_name,
verification_tokens=("cat", "dog"),
)
with pytest.raises(AssertionError):
PretrainedTransformerTokenizer(
model_name,
verification_tokens=("unknowntoken", "dog"),
)
with pytest.raises(AssertionError):
PretrainedTransformerTokenizer(
model_name,
verification_tokens=("cat", "cat"),
)