Skip to content

Commit e2b1860

Browse files
committed
Release v1.5.2 ready!
1 parent 1b8e9ae commit e2b1860

File tree

1 file changed

+42
-5
lines changed

1 file changed

+42
-5
lines changed

docs/releases/mydoc_release_notes_152.md

Lines changed: 42 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
!!! summary ""
2-
Version 1.5.2 of DynaML, released March 2, 2017, introduces functionality through improvement in the pipes API and increased integration with Tensorflow.
2+
Version 1.5.2 of DynaML, released March 5, 2017, introduces functionality through improvement in the pipes API and increased integration with Tensorflow.
33

44

55
## Additions
@@ -12,21 +12,58 @@
1212

1313
**Package** `dynaml.tensorflow`
1414

15-
- The `dtf` package object houses utility functions related to tensorflow primitives. Currently supports creation of tensors from arrays.
16-
- The `dtflearn` package object deals with basic neural network building blocks which are often needed while constructing prediction architectures.
15+
- The [`dtf`](https://transcendent-ai-labs.github.io/api_docs/DynaML/v1.5.2/dynaml-core/#io.github.mandar2812.dynaml.tensorflow.package$$dtf$) package object houses utility functions related to tensorflow primitives. Currently supports creation of tensors from arrays.
1716

17+
```scala
18+
import io.github.mandar2812.dynaml.tensorflow._
19+
import org.platanios.tensorflow.api._
20+
//Create a FLOAT32 Tensor of shape (2, 2), i.e. a square matrix
21+
val mat = dtf.tensor_f32(2, 2)(1d, 2d, 3d, 4d)
22+
23+
//Create a random 2 * 3 matrix with independent standard normal entries
24+
val rand_mat = dtf.random(FLOAT32, 2, 3)(
25+
GaussianRV(0d, 1d) > DataPipe((x: Double) => x.toFloat)
26+
)
27+
28+
//Multiply matrices
29+
val prod = mat.matmul(rand_mat)
30+
println(prod.summarize())
31+
32+
val another_rand_mat = dtf.random(FLOAT32, 2, 3)(
33+
GaussianRV(0d, 1d) > DataPipe((x: Double) => x.toFloat)
34+
)
35+
36+
//Stack tensors vertically, i.e. row wise
37+
val vert_tensor = dtf.stack(Seq(rand_mat, another_rand_mat), axis = 0)
38+
//Stack vectors horizontally, i.e. column wise
39+
val horz_tensor = dtf.stack(Seq(rand_mat, another_rand_mat), axis = 1)
40+
```
41+
42+
- The [`dtflearn`](https://transcendent-ai-labs.github.io/api_docs/DynaML/v1.5.2/dynaml-core/#io.github.mandar2812.dynaml.tensorflow.package$$dtflearn$) package object deals with basic neural network building blocks which are often needed while constructing prediction architectures.
43+
44+
```scala
45+
//Create a simple neural architecture with one convolutional layer
46+
//followed by a max pool and feedforward layer
47+
val net = tf.learn.Cast("Input/Cast", FLOAT32) >>
48+
dtflearn.conv2d_pyramid(2, 3)(4, 2)(0.1f, true, 0.6F) >>
49+
tf.learn.MaxPool("Layer_3/MaxPool", Seq(1, 2, 2, 1), 1, 1, SamePadding) >>
50+
tf.learn.Flatten("Layer_3/Flatten") >>
51+
dtflearn.feedforward(256)(id = 4) >>
52+
tf.learn.ReLU("Layer_4/ReLU", 0.1f) >>
53+
dtflearn.feedforward(10)(id = 5)
54+
```
1855

1956
### Library Organisation
2057

2158
- Added `dynaml-repl` and `dynaml-notebook` modules to repository.
2259

2360
### DynaML Server
2461

25-
- DynaML ssh server now available
62+
- DynaML ssh server now available (only in Local mode)
2663
```bash
2764
$ ./target/universal/stage/bin/dynaml --server
2865
```
29-
To login to the server open a separate shell and type
66+
To login to the server open a separate shell and type, (when prompted for password, just press ENTER)
3067
```bash
3168
$ ssh repl@localhost -p22222
3269
```

0 commit comments

Comments
 (0)