@@ -36,10 +36,10 @@ def __init__(self, data, max_samples=100, clustering=None):
36
36
The distance metric to use for creating the clustering of the features. The
37
37
distance function can be any valid scipy.spatial.distance.pdist's metric argument.
38
38
However we suggest using 'correlation' in most cases. The full list of options is
39
- ‘ braycurtis’, ‘ canberra’, ‘ chebyshev’, ‘ cityblock’, ‘ correlation’, ‘ cosine’, ‘ dice’ ,
40
- ‘ euclidean’, ‘ hamming’, ‘ jaccard’, ‘ jensenshannon’, ‘ kulsinski’, ‘ mahalanobis’ ,
41
- ‘ matching’, ‘ minkowski’, ‘ rogerstanimoto’, ‘ russellrao’, ‘ seuclidean’ ,
42
- ‘ sokalmichener’, ‘ sokalsneath’, ‘ sqeuclidean’, ‘ yule’ . These are all
39
+ ` braycurtis`, ` canberra`, ` chebyshev`, ` cityblock`, ` correlation`, ` cosine`, ` dice` ,
40
+ ` euclidean`, ` hamming`, ` jaccard`, ` jensenshannon`, ` kulsinski`, ` mahalanobis` ,
41
+ ` matching`, ` minkowski`, ` rogerstanimoto`, ` russellrao`, ` seuclidean` ,
42
+ ` sokalmichener`, ` sokalsneath`, ` sqeuclidean`, ` yule` . These are all
43
43
the options from scipy.spatial.distance.pdist's metric argument.
44
44
"""
45
45
@@ -289,10 +289,10 @@ def __init__(self, data, max_samples=100, clustering="correlation"):
289
289
If a string, then this is the distance metric to use for creating the clustering of
290
290
the features. The distance function can be any valid scipy.spatial.distance.pdist's metric
291
291
argument. However we suggest using 'correlation' in most cases. The full list of options is
292
- ‘ braycurtis’, ‘ canberra’, ‘ chebyshev’, ‘ cityblock’, ‘ correlation’, ‘ cosine’, ‘ dice’ ,
293
- ‘ euclidean’, ‘ hamming’, ‘ jaccard’, ‘ jensenshannon’, ‘ kulsinski’, ‘ mahalanobis’ ,
294
- ‘ matching’, ‘ minkowski’, ‘ rogerstanimoto’, ‘ russellrao’, ‘ seuclidean’ ,
295
- ‘ sokalmichener’, ‘ sokalsneath’, ‘ sqeuclidean’, ‘ yule’ . These are all
292
+ ` braycurtis`, ` canberra`, ` chebyshev`, ` cityblock`, ` correlation`, ` cosine`, ` dice` ,
293
+ ` euclidean`, ` hamming`, ` jaccard`, ` jensenshannon`, ` kulsinski`, ` mahalanobis` ,
294
+ ` matching`, ` minkowski`, ` rogerstanimoto`, ` russellrao`, ` seuclidean` ,
295
+ ` sokalmichener`, ` sokalsneath`, ` sqeuclidean`, ` yule` . These are all
296
296
the options from scipy.spatial.distance.pdist's metric argument.
297
297
If an array, then this is assumed to be the clustering of the features.
298
298
"""
0 commit comments