-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathinstant_id.py
322 lines (283 loc) · 11.3 KB
/
instant_id.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Requirements: diffusers==0.25.1.
# Reference: https://github.com/InstantID/InstantID/blob/main/gradio_demo/requirements.txt
REPO = None
FACE_ANALYSIS_ROOT = None
MODEL = "wangqixun/YamerMIX_v8"
VARIANT = None
CUSTOM_PIPELINE = "pipeline_stable_diffusion_xl_instantid"
SCHEDULER = "EulerAncestralDiscreteScheduler"
LORA = None
CONTROLNET = "InstantX/InstantID"
STEPS = 30
PROMPT = "film noir style, ink sketch|vector, male man, highly detailed, sharp focus, ultra sharpness, monochrome, high contrast, dramatic shadows, 1940s style, mysterious, cinematic"
NEGATIVE_PROMPT = "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vibrant, colorful"
SEED = None
WARMUPS = 3
BATCH = 1
HEIGHT = None
WIDTH = None
INPUT_IMAGE = "https://github.com/InstantID/InstantID/blob/main/examples/musk_resize.jpeg?raw=true"
OUTPUT_IMAGE = None
EXTRA_CALL_KWARGS = """{
"controlnet_conditioning_scale": 0.8,
"ip_adapter_scale": 0.8
}"""
CACHE_INTERVAL = 3
CACHE_LAYER_ID = 0
CACHE_BLOCK_ID = 0
import argparse
import importlib
import inspect
import json
import os
import sys
import time
import cv2
import numpy as np
import torch
from diffusers.utils import load_image
from huggingface_hub import snapshot_download
from insightface.app import FaceAnalysis
from PIL import Image, ImageDraw
import oneflow as flow # usort: skip
from onediffx import compile_pipe
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--repo", type=str, default=REPO)
parser.add_argument("--face-analysis-root", type=str, default=FACE_ANALYSIS_ROOT)
parser.add_argument("--model", type=str, default=MODEL)
parser.add_argument("--variant", type=str, default=VARIANT)
parser.add_argument("--custom-pipeline", type=str, default=CUSTOM_PIPELINE)
parser.add_argument("--scheduler", type=str, default=SCHEDULER)
parser.add_argument("--lora", type=str, default=LORA)
parser.add_argument("--controlnet", type=str, default=CONTROLNET)
parser.add_argument("--steps", type=int, default=STEPS)
parser.add_argument("--prompt", type=str, default=PROMPT)
parser.add_argument("--negative-prompt", type=str, default=NEGATIVE_PROMPT)
parser.add_argument("--seed", type=int, default=SEED)
parser.add_argument("--warmups", type=int, default=WARMUPS)
parser.add_argument("--batch", type=int, default=BATCH)
parser.add_argument("--height", type=int, default=HEIGHT)
parser.add_argument("--width", type=int, default=WIDTH)
parser.add_argument("--cache_interval", type=int, default=CACHE_INTERVAL)
parser.add_argument("--cache_layer_id", type=int, default=CACHE_LAYER_ID)
parser.add_argument("--cache_block_id", type=int, default=CACHE_BLOCK_ID)
parser.add_argument("--extra-call-kwargs", type=str, default=EXTRA_CALL_KWARGS)
parser.add_argument("--input-image", type=str, default=INPUT_IMAGE)
parser.add_argument("--output-image", type=str, default=OUTPUT_IMAGE)
parser.add_argument("--deepcache", action="store_true")
parser.add_argument(
"--compiler",
type=str,
default="oneflow",
choices=["none", "oneflow", "compile", "compile-max-autotune"],
)
return parser.parse_args()
def load_pipe(
pipeline_cls,
model_name,
variant=None,
custom_pipeline=None,
scheduler=None,
lora=None,
controlnet=None,
):
extra_kwargs = {}
if custom_pipeline is not None:
extra_kwargs["custom_pipeline"] = custom_pipeline
if variant is not None:
extra_kwargs["variant"] = variant
if controlnet is not None:
from diffusers import ControlNetModel
controlnet = ControlNetModel.from_pretrained(
controlnet,
torch_dtype=torch.float16,
)
extra_kwargs["controlnet"] = controlnet
if os.path.exists(os.path.join(model_name, "calibrate_info.txt")):
from onediff.quantization import QuantPipeline
pipe = QuantPipeline.from_pretrained(
pipeline_cls, model_name, torch_dtype=torch.float16, **extra_kwargs
)
else:
pipe = pipeline_cls.from_pretrained(
model_name, torch_dtype=torch.float16, **extra_kwargs
)
if scheduler is not None:
scheduler_cls = getattr(importlib.import_module("diffusers"), scheduler)
pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
if lora is not None:
pipe.load_lora_weights(lora)
pipe.fuse_lora()
pipe.safety_checker = None
pipe.to(torch.device("cuda"))
return pipe
class IterationProfiler:
def __init__(self):
self.begin = None
self.end = None
self.num_iterations = 0
def get_iter_per_sec(self):
if self.begin is None or self.end is None:
return None
self.end.synchronize()
dur = self.begin.elapsed_time(self.end)
return self.num_iterations / dur * 1000.0
def callback_on_step_end(self, pipe, i, t, callback_kwargs={}):
if self.begin is None:
event = torch.cuda.Event(enable_timing=True)
event.record()
self.begin = event
else:
event = torch.cuda.Event(enable_timing=True)
event.record()
self.end = event
self.num_iterations += 1
return callback_kwargs
def main():
args = parse_args()
assert (
args.controlnet is not None
), "Please set `--controlnet` to the name or path of the controlnet"
assert (
args.face_analysis_root is not None
), "Please set `--face-analysis-root` to the path of the working directory of insightface.app.FaceAnalysis"
assert os.path.isdir(
os.path.join(args.face_analysis_root, "models", "antelopev2")
), f"Please download models from https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing and extract to {os.path.join(args.face_analysis_root, 'models', 'antelopev2')}"
assert (
args.input_image is not None
), "Please set `--input-image` to the path of the input image"
assert not args.deepcache
if args.compiler == "oneflow":
# Patch the attention processors to make them compatible with us.
attention_processor_path = os.path.join(
args.repo, "ip_adapter", "attention_processor.py"
)
with open(attention_processor_path, "r") as f:
content = f.read()
if "__call__" in content:
content = content.replace("__call__", "forward")
with open(attention_processor_path, "w") as f:
f.write(content)
custom_pipeline = None
draw_kps = None
if args.repo is None:
custom_pipeline = args.custom_pipeline
from diffusers import DiffusionPipeline
pipeline_cls = DiffusionPipeline
else:
sys.path.insert(0, args.repo)
from pipeline_stable_diffusion_xl_instantid import (
draw_kps,
StableDiffusionXLInstantIDPipeline as pipeline_cls,
)
if os.path.exists(args.controlnet):
controlnet = args.controlnet
else:
controlnet = snapshot_download(args.controlnet)
app = FaceAnalysis(
name="antelopev2",
root=args.face_analysis_root,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
app.prepare(ctx_id=0, det_size=(640, 640))
face_adapter = os.path.join(controlnet, "ip-adapter.bin")
controlnet_path = os.path.join(controlnet, "ControlNetModel")
pipe = load_pipe(
pipeline_cls,
args.model,
variant=args.variant,
custom_pipeline=custom_pipeline,
scheduler=args.scheduler,
lora=args.lora,
controlnet=controlnet_path,
)
if draw_kps is None:
draw_kps = sys.modules[pipe.__module__].draw_kps
pipe.load_ip_adapter_instantid(face_adapter)
height = args.height or pipe.unet.config.sample_size * pipe.vae_scale_factor
width = args.width or pipe.unet.config.sample_size * pipe.vae_scale_factor
if args.compiler == "none":
pass
elif args.compiler == "oneflow":
pipe = compile_pipe(pipe)
elif args.compiler in ("compile", "compile-max-autotune"):
mode = "max-autotune" if args.compiler == "compile-max-autotune" else None
pipe.unet = torch.compile(pipe.unet, mode=mode)
if hasattr(pipe, "controlnet"):
pipe.controlnet = torch.compile(pipe.controlnet, mode=mode)
pipe.vae = torch.compile(pipe.vae, mode=mode)
else:
raise ValueError(f"Unknown compiler: {args.compiler}")
input_image = load_image(args.input_image)
input_image = input_image.resize((width, height), Image.LANCZOS)
face_image = input_image
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(face_image, face_info["kps"])
def get_kwarg_inputs():
kwarg_inputs = dict(
prompt=args.prompt,
negative_prompt=args.negative_prompt,
image_embeds=face_emb,
image=face_kps,
height=height,
width=width,
num_inference_steps=args.steps,
num_images_per_prompt=args.batch,
generator=None
if args.seed is None
else torch.Generator(device="cuda").manual_seed(args.seed),
**(
dict()
if args.extra_call_kwargs is None
else json.loads(args.extra_call_kwargs)
),
)
if args.deepcache:
kwarg_inputs["cache_interval"] = args.cache_interval
kwarg_inputs["cache_layer_id"] = args.cache_layer_id
kwarg_inputs["cache_block_id"] = args.cache_block_id
return kwarg_inputs
# NOTE: Warm it up.
# The initial calls will trigger compilation and might be very slow.
# After that, it should be very fast.
if args.warmups > 0:
print("Begin warmup")
for _ in range(args.warmups):
pipe(**get_kwarg_inputs())
print("End warmup")
# Let"s see it!
# Note: Progress bar might work incorrectly due to the async nature of CUDA.
kwarg_inputs = get_kwarg_inputs()
iter_profiler = IterationProfiler()
if "callback_on_step_end" in inspect.signature(pipe).parameters:
kwarg_inputs["callback_on_step_end"] = iter_profiler.callback_on_step_end
elif "callback" in inspect.signature(pipe).parameters:
kwarg_inputs["callback"] = iter_profiler.callback_on_step_end
begin = time.time()
output_images = pipe(**kwarg_inputs).images
end = time.time()
print("=======================================")
print(f"Inference time: {end - begin:.3f}s")
iter_per_sec = iter_profiler.get_iter_per_sec()
if iter_per_sec is not None:
print(f"Iterations per second: {iter_per_sec:.3f}")
cuda_mem_after_used = flow._oneflow_internal.GetCUDAMemoryUsed()
host_mem_after_used = flow._oneflow_internal.GetCPUMemoryUsed()
print(f"CUDA Mem after: {cuda_mem_after_used / 1024:.3f}GiB")
print(f"Host Mem after: {host_mem_after_used / 1024:.3f}GiB")
print("=======================================")
if args.output_image is not None:
output_images[0].save(args.output_image)
else:
print("Please set `--output-image` to save the output image")
if __name__ == "__main__":
main()