-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdensity_experiment.py
775 lines (631 loc) · 37.4 KB
/
density_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import argparse
import datetime
import torch
import numpy as np
import math
import random
import os
import logging
import time
from tensorboardX import SummaryWriter
from shutil import copyfile
from collections import Counter
from optimization.optimizers import init_optimizer
from models.boosted_flow import BoostedFlow
from models.realnvp import RealNVPFlow
from models.glow import Glow
from utils.utilities import save, load, init_log, softmax
from utils.load_data import load_density_dataset
from utils.distributions import log_normal_diag, log_normal_standard, log_normal_normalized
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser(description='PyTorch Gradient Boosted Normalizing flows')
parser.add_argument('--dataset', type=str, help='Dataset choice.', choices=['power', 'gas', 'hepmass', 'miniboone', 'bsds300'])
# seeds
parser.add_argument('--manual_seed', type=int, default=1,
help='manual seed, if not given resorts to random seed.')
# testing vs. just validation
fp = parser.add_mutually_exclusive_group(required=False)
fp.add_argument('--testing', action='store_true', dest='testing', help='evaluate on test set after training')
fp.add_argument('--validation', action='store_false', dest='testing', help='only evaluate on validation set')
parser.set_defaults(testing=True)
# gpu/cpu
parser.add_argument('--gpu_id', type=int, default=0, metavar='GPU', help='choose GPU to run on.')
parser.add_argument('--num_workers', type=int, default=1, help='How many CPU cores to run on. Setting to 0 uses os.cpu_count() - 1.')
parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--no_benchmark', dest='benchmark', action='store_false', help='Turn off CUDNN benchmarking')
parser.set_defaults(benchmark=True)
parser.add_argument('--experiment_name', type=str, default="density",
help="A name to help identify the experiment being run when training this model.")
parser.add_argument('--out_dir', type=str, default='./results/snapshots', help='Output directory for model snapshots etc.')
parser.add_argument('--data_dir', type=str, default='./data/raw/', help="Where raw data is saved.")
parser.add_argument('--exp_log', type=str, default='./results/density_experiment_log.txt', help='File to save high-level results from each run of an experiment.')
parser.add_argument('--print_log', dest="print_log", action="store_true", help='Add this flag to have progress printed to log (rather than only saved to a file).')
parser.set_defaults(print_log=True)
parser.add_argument('--no_tensorboard', dest="tensorboard", action="store_false", help='Turns off saving results to tensorboard.')
parser.set_defaults(tensorboard=True)
parser.add_argument('--load', type=str, default=None, help='Path to load the model from')
parser.add_argument('--save_intermediate_checkpoints', dest="save_intermediate_checkpoints",
action="store_true", help='Save versions of the boosted model after each component converges.')
parser.set_defaults(save_intermediate_checkpoints=False)
at = parser.add_mutually_exclusive_group(required=False)
at.add_argument('--loaded_is_not_all_trained', action="store_false", dest='loaded_all_trained',
help="Set this if you don't want the loaded boosted model to be consider all_trained (default=True)")
at.add_argument('--loaded_is_all_trained', action='store_true', dest='loaded_all_trained',
help='Default setting, which assumes the loaded boosted model is all_trained.')
parser.set_defaults(loaded_all_trained=None)
parser.add_argument('--loaded_init_component', default=None, type=int, help='Boosted component to begin training on first from a loaded model.')
parser.add_argument('--loaded_num_components', default=None, type=int,
help='If loading a boosted model, this will limit the loaded model to only use the first "loaded_num_components" components in all tasks.')
parser.add_argument('--init_epoch', default=1, type=int, help='Epoch number to start at (helpful if loading a model')
sr = parser.add_mutually_exclusive_group(required=False)
sr.add_argument('--save_results', action='store_true', dest='save_results', help='Save results from experiments.')
sr.add_argument('--discard_results', action='store_false', dest='save_results', help='Do NOT save results from experiments.')
parser.set_defaults(save_results=True)
# optimization settings
parser.add_argument('--epochs', type=int, default=100, help='Maximum number of epochs to train')
parser.add_argument('--early_stopping_epochs', type=int, default=50, help='number of early stopping epochs')
parser.add_argument('--batch_size', type=int, default=512, help='input batch size for training')
parser.add_argument('--eval_batch_size', type=int, default=1024, help='batch size for evaluation')
parser.add_argument('--learning_rate', type=float, default=None, help='learning rate, if none use best values found during LR range test for that dataset')
parser.add_argument('--min_lr', type=float, default=None, help='Minimum learning rate used in cyclic learning rates schedulers')
parser.add_argument('--patience', type=int, default=5, help='If using LR schedule, number of epochs before reducing LR.')
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay parameter in Adamax')
parser.add_argument("--num_init_batches", type=int,default=15, help="Number of batches to use for Act Norm initialisation")
parser.add_argument("--warmup_epochs", type=int, default=0, help="Use this number of epochs to warmup learning rate linearly from zero to learning rate")
parser.add_argument('--no_lr_schedule', action='store_true', default=False, help='Disables learning rate scheduler during training')
parser.add_argument('--lr_schedule', type=str, default=None, help="Type of LR schedule to use.", choices=['plateau', 'cosine', 'test', 'cyclic', None])
parser.add_argument('--lr_restarts', type=int, default=1, help='If using a cyclic/cosine learning rate, how many times should the LR schedule restart? Must evenly divide epochs')
parser.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'sgd'], help='Use AdamW or SDG as optimizer?')
parser.add_argument("--max_grad_clip", type=float, default=0.0, help="Max gradient value (clip above max_grad_clip, 0 for off)")
parser.add_argument("--max_grad_norm", type=float, default=0.0, help="Max norm of gradient (clip above max_grad_norm, 0 for off)")
# flow parameters
parser.add_argument('--flow', type=str, default='glow', help="Type of flow to use", choices=['realnvp', 'glow', 'boosted'])
parser.add_argument("--num_flows", type=int, default=5, help="Number of flow layers per block")
parser.add_argument("--num_blocks", type=int, default=1, help="Number of blocks. Ignored for non glow models")
parser.add_argument("--actnorm_scale", type=float, default=1.0, help="Act norm scale")
parser.add_argument("--flow_permutation", type=str, default="shuffle", choices=["invconv", "shuffle", "reverse"], help="Type of flow permutation")
parser.add_argument("--flow_coupling", type=str, default="affine", choices=["additive", "affine"], help="Type of flow coupling")
parser.add_argument("--no_LU_decomposed", action="store_false", dest="LU_decomposed", help="Don't train with LU decomposed 1x1 convs")
parser.set_defaults(LU_decomposed=True)
parser.add_argument("--learn_top", action="store_true", dest="learn_top", help="Do not train top layer (prior)")
parser.set_defaults(learn_top=False)
parser.add_argument("--y_weight", type=float, default=0.01, help="Weight for class condition loss")
parser.add_argument("--y_condition", action="store_true", help="Train using class condition")
parser.set_defaults(y_condition=False)
parser.add_argument("--y_multiclass", action="store_true", help="Y is a multiclass classification")
parser.set_defaults(y_multiclass=False)
parser.add_argument('--use_attention', dest='use_attn', action='store_true', help='Use attention in the coupling layers')
parser.set_defaults(use_attn=False)
parser.add_argument('--h_size', type=int, help='Width of layers in base networks of iaf and realnvp. Ignored for all other flows.')
parser.add_argument('--h_size_factor', type=int, help='Sets width of hidden layers as h_size_factor * dimension of data.')
parser.add_argument('--no_batch_norm', dest='batch_norm', action='store_false', help='Disables batch norm in realnvp layers (not recommended)')
parser.set_defaults(batch_norm=True)
parser.add_argument('--coupling_network_depth', type=int, default=1, help='Number of layers in the coupling network of iaf and realnvp. Ignored for all other flows.')
parser.add_argument('--coupling_network', type=str, default='tanh', choices=['relu', 'residual', 'tanh', 'random', 'mixed'],
help='Base network for RealNVP coupling layers. Random chooses between either Tanh or ReLU for every network, whereas mixed uses ReLU for the T network and TanH for the S network.')
parser.add_argument('--sample_interval', type=int, default=5, help='How often (epochs) to save samples from the model')
parser.add_argument('--sample_size', type=int, default=16, help='Number of images to sample from model')
parser.add_argument("--temperature", type=float, default=1.0, help="Temperature of samples")
# Boosting parameters
parser.add_argument('--epochs_per_component', type=int, default=100,
help='Number of epochs to train each component of a boosted model. Defaults to max(annealing_schedule, epochs_per_component). Ignored for non-boosted models.')
parser.add_argument('--boosted_burnin_epochs', type=int, default=None,
help='(DEPRECATED) Number of epochs to warmup/burnin for EACH component before proceeding with a full training schedule')
parser.add_argument('--rho_init', type=str, default='decreasing', choices=['decreasing', 'uniform'],
help='Initialization scheme for boosted parameter rho')
parser.add_argument('--rho_iters', type=int, default=0, help='Maximum number of SGD iterations for training boosting weights')
parser.add_argument('--rho_lr', type=float, default=0.005, help='Initial learning rate used for training boosting weights')
parser.add_argument('--num_components', type=int, default=2,
help='How many components are combined to form the flow')
parser.add_argument('--component_type', type=str, default='affine', choices=['liniaf', 'affine', 'nlsq', 'realnvp', 'glow'],
help='When flow is boosted -- what type of flow should each component implement.')
def parse_args(main_args=None):
"""
Parse command line arguments and compute number of cores to use
"""
args = parser.parse_args(main_args)
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.device = torch.device("cuda" if args.cuda else "cpu")
if args.device == "cuda":
cudnn.benchmark = args.benchmark
args.boosted = args.flow == "boosted"
args.dynamic_binarization = False
args.density_evaluation = True
args.shuffle = True
args.init_epoch = min(max(1, args.init_epoch), args.epochs)
if args.h_size is None and args.h_size_factor is None:
raise ValueError("Must specify the hidden size h_size, or provide the size of hidden layer relative to the data with h_size_factor")
elif args.h_size is not None and args.h_size_factor is not None:
raise ValueError("You must only specify either h_size or h_size_factor, but not both.")
elif args.h_size is None:
h_size = f'{args.h_size_factor}xD'
else:
h_size = str(args.h_size)
# default optimization settings for each optimizer and dataset
if args.learning_rate is None:
logger.info("No learning rate given, using default settings for this dataset")
if args.optimizer == "adam":
if args.dataset == "miniboone":
args.learning_rate = 5e-4
args.min_lr = 5e-6
args.max_grad_norm = 20.0
args.weight_decay = 1e-5
elif args.dataset == "gas":
args.learning_rate = 8e-4
args.min_lr = 2e-6
args.max_grad_norm = 20.0
args.weight_decay = 1e-4
elif args.dataset == "hepmass":
args.learning_rate = 1e-3
args.min_lr = 1e-5
args.max_grad_norm = 10.0
args.weight_decay = 1e-5
elif args.dataset == "power":
args.learning_rate = 1e-4
args.min_lr = 1e-6
args.max_grad_norm = 10.0
args.weight_decay = 1e-3
elif args.dataset == "bsds300":
args.learning_rate = 1e-5
args.min_lr = 1e-6
args.max_grad_norm = 60.0
args.weight_decay = 1e-5
elif args.optimizer == "sgd":
if args.dataset == "miniboone":
args.learning_rate = 1e-3
args.min_lr = 1e-4
args.max_grad_norm = 20.0
args.weight_decay = 1e-5
elif args.dataset == "gas":
args.learning_rate = 1e-4
args.min_lr = 5e-6
args.max_grad_norm = 10.0
args.weight_decay = 1e-4
elif args.dataset == "hepmass":
args.learning_rate = 1e-3
args.min_lr = 1e-5
args.max_grad_norm = 10.0
args.weight_decay = 1e-5
elif args.dataset == "power":
args.learning_rate = 1e-3
args.min_lr = 1e-4
args.max_grad_norm = 10.0
args.weight_decay = 1e-5
elif args.dataset == "bsds300":
args.learning_rate = 6e-4
args.min_lr =51e-5
args.max_grad_norm = 60.0
args.weight_decay = 1e-5
else:
raise ValueError(f"No default settings found for optimizer {args.optimizer}")
# Set a random seed if not given one
if args.manual_seed is None:
args.manual_seed = random.randint(1, 100000)
random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
np.random.seed(args.manual_seed)
# intialize snapshots directory for saving models and results
args.model_signature = str(datetime.datetime.now())[0:19].replace(' ', '_').replace(':', '_').replace('-', '_')
args.experiment_name = args.experiment_name + "_" if args.experiment_name is not None else ""
args.snap_dir = os.path.join(args.out_dir, f"{args.experiment_name}{args.dataset}_{args.flow}")
if args.flow == 'boosted':
args.snap_dir += f'_{args.component_type}_C{args.num_components}'
if (args.epochs_per_component % args.lr_restarts) != 0:
raise ValueError(f"lr_restarts {args.lr_restarts} must evenly divide epochs_per_component {args.epochs_per_component}")
else:
args.num_components = 1
if (args.epochs % args.lr_restarts) != 0:
raise ValueError(f"lr_restarts {args.lr_restarts} must evenly divide epochs {args.epochs}")
args.snap_dir += f'_K{args.num_flows}'
if args.flow == "glow" or args.component_type == "glow":
args.num_dequant_blocks = 0
args.snap_dir += f'_L{str(args.num_blocks)}_{args.flow_permutation}_{args.flow_coupling}'
args.snap_dir += f'_{args.coupling_network}{args.coupling_network_depth}'
lr_schedule = f'_lr{str(args.learning_rate)[2:]}'
if args.lr_schedule is None or args.no_lr_schedule:
args.no_lr_schedule = True
args.lr_schedule = None
else:
args.no_lr_schedule = False
lr_schedule += f'{args.lr_schedule}'
epochs = args.epochs_per_component if args.boosted else args.epochs
lr_schedule += f'{args.lr_restarts}x{int(epochs / args.lr_restarts)}' if args.lr_schedule in ['cosine', 'cyclic'] else ''
args.snap_dir += f'_hsize{h_size}' + lr_schedule + f"_bs{args.batch_size}_seed{args.manual_seed}_{args.model_signature}/"
if not os.path.exists(args.snap_dir):
os.makedirs(args.snap_dir)
init_log(args)
# Set up multiple CPU/GPUs
logger.info("COMPUTATION SETTINGS:")
logger.info(f"Random Seed: {args.manual_seed}")
if args.cuda:
logger_msg = "Using CUDA GPU"
torch.cuda.set_device(args.gpu_id)
else:
logger_msg = "Using CPU"
if args.num_workers > 0:
num_workers = args.num_workers
else:
num_workers = max(1, os.cpu_count() - 1)
logger_msg += "\n\tCores available: {} (only requesting {})".format(os.cpu_count(), num_workers)
torch.set_num_threads(num_workers)
logger_msg += "\n\tConfirmed Number of CPU threads: {}".format(torch.get_num_threads())
kwargs = {'num_workers': 0, 'pin_memory': True} if args.cuda else {}
logger.info(logger_msg + "\n")
return args, kwargs
def init_model(args):
if args.flow == 'glow':
model = Glow(args).to(args.device)
elif args.flow == 'boosted':
model = BoostedFlow(args).to(args.device)
elif args.flow == 'realnvp':
model = RealNVPFlow(args).to(args.device)
else:
raise ValueError('Invalid flow choice')
return model
def train(model, data_loaders, optimizer, scheduler, args):
writer = SummaryWriter(args.snap_dir) if args.tensorboard else None
header_msg = f'| Epoch | {"TRAIN": <14}{"Loss": >4} | {"VALIDATION": <14}{"Loss": >4} | {"TIMING":<8}{"(sec)":>4} | {"Improved": >8} |'
header_msg += f' {"Component": >9} | {"All Trained": >11} | {"Rho": >{min(8, args.num_components) * 6}} |' if args.boosted else ''
logger.info('|' + "-"*(len(header_msg)-2) + '|')
logger.info(header_msg)
logger.info('|' + "-"*(len(header_msg)-2) + '|')
best_loss = np.array([np.inf] * args.num_components)
early_stop_count = 0
converged_epoch = 0 # for boosting, helps keep track how long the current component has been training
if args.boosted:
#model.component = 0
prev_lr = init_boosted_lr(model, optimizer, args)
else:
prev_lr = []
grad_norm = None
epoch_times = []
epoch_train = []
epoch_valid = []
pval_loss = 0.0
val_losses = {'g_nll': 9999999.9}
step = 0
for epoch in range(args.init_epoch, args.epochs + 1):
model.train()
train_loss = []
t_start = time.time()
for batch_id, (x, _) in enumerate(data_loaders['train']):
# initialize data and optimizer
x = x.to(args.device)
optimizer.zero_grad()
# initialize ActNorm on first steps
if (args.flow =='glow' or args.component_type == 'glow') and step < args.num_init_batches:
with torch.no_grad():
if args.boosted:
for i in range(args.num_components):
model(x=x, components=i)
else:
model(x=x)
step += 1
continue
# compute loss and gradients
losses = compute_kl_pq_loss(model, x, args)
train_loss.append(losses['nll'])
losses['nll'].backward()
if args.max_grad_norm > 0:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# Adjust learning rates for boosted model, keep fixed components frozen
if args.boosted:
update_learning_rates(prev_lr, model, optimizer, step, args)
# batch level reporting
batch_reporting(writer, optimizer, losses, grad_norm, step, args)
# Perform gradient update, modify learning rate according to learning rate schedule
optimizer.step()
if not args.no_lr_schedule:
prev_lr = update_scheduler(prev_lr, model, optimizer, scheduler, val_losses['g_nll'], step, args)
if args.lr_schedule == "test":
if step % 50 == 0:
pval_loss = evaluate(model, data_loaders['val'], args)['nll']
writer.add_scalar('step/val_nll', pval_loss, step)
step += 1
# Validation, collect results
val_losses = evaluate(model, data_loaders['val'], args)
train_loss = torch.stack(train_loss).mean().item()
epoch_times.append(time.time() - t_start)
epoch_train.append(train_loss)
epoch_valid.append(val_losses['nll'])
# Assess convergence
component = (model.component, model.all_trained) if args.boosted else 0
converged, model_improved, early_stop_count, best_loss = check_convergence(
early_stop_count, val_losses, best_loss, epoch - converged_epoch, component, args)
if model_improved:
fname = f'model_c{model.component}.pt' if args.boosted and args.save_intermediate_checkpoints else 'model.pt'
save(model, optimizer, args.snap_dir + fname, scheduler)
# epoch level reporting
epoch_msg = epoch_reporting(writer, model, train_loss, val_losses, epoch_times, model_improved, epoch, args)
if converged:
logger.info(epoch_msg + ' |')
logger.info("-"*(len(header_msg)))
if args.boosted:
converged_epoch = epoch
# revert back to the last best version of the model and update rho
fname = f'model_c{model.component}.pt' if args.save_intermediate_checkpoints else 'model.pt'
load(model=model, optimizer=optimizer, path=args.snap_dir + fname, args=args, scheduler=scheduler, verbose=False)
model.update_rho(data_loaders['train'])
last_component = model.component == (args.num_components - 1)
no_fine_tuning = args.epochs <= args.epochs_per_component * args.num_components
fine_tuning_done = model.all_trained and last_component # no early stopping if burnin employed
if (fine_tuning_done or no_fine_tuning) and last_component:
# stop the full model after all components have been trained
logger.info(f"Model converged, training complete, saving: {args.snap_dir + 'model.pt'}")
model.all_trained = True
save(model, optimizer, args.snap_dir + f'model.pt', scheduler)
break
# else if not done training: save model with updated rho
save(model, optimizer, args.snap_dir + fname, scheduler)
# tempory: look at results after each component
test_loss = evaluate(model, data_loaders['test'], args)
logger.info(f"Loss after training {model.component + 1} components: {test_loss['nll']:8.3f}")
logger.info("-"*(len(header_msg)))
# reset optimizer, scheduler, and early_stop_count and train the next component
model.increment_component()
early_stop_count = 0
val_losses = {'g_nll': 9999999.9}
optimizer, scheduler = init_optimizer(model, args, verbose=False)
prev_lr = init_boosted_lr(model, optimizer, args)
else:
# if a standard model converges once, break
logger.info(f"Model converged, stopping training.")
break
else:
logger.info(epoch_msg + ' |')
if epoch == args.epochs:
if args.boosted and args.save_intermediate_checkpoints:
# Save the best version of the model trained up to the current component with filename model.pt
# This is to protect against times when the model is trained/re-trained but doesn't run long enough
# for all components to converge / train completely
copyfile(args.snap_dir + f'model_c{model.component}.pt', args.snap_dir + 'model.pt')
logger.info(f"Resaving last improved version of {f'model_c{model.component}.pt'} as 'model.pt' for future testing")
else:
logger.info(f"Stopping training after {epoch} epochs of training.")
logger.info('|' + "-"*(len(header_msg)-2) + '|\n')
if args.tensorboard:
writer.close()
epoch_times, epoch_train, epoch_valid = np.array(epoch_times), np.array(epoch_train), np.array(epoch_valid)
timing_msg = f"Stopped after {epoch_times.shape[0]} epochs. "
timing_msg += f"Average train time per epoch: {np.mean(epoch_times):.2f} +/- {np.std(epoch_times, ddof=1):.2f}"
logger.info(timing_msg + '\n')
if args.save_results:
np.savetxt(args.snap_dir + '/train_loss.csv', epoch_train, fmt='%f', delimiter=',')
np.savetxt(args.snap_dir + '/valid_loss.csv', epoch_valid, fmt='%f', delimiter=',')
np.savetxt(args.snap_dir + '/epoch_times.csv', epoch_times, fmt='%f', delimiter=',')
with open(args.exp_log, 'a') as ff:
timestamp = str(datetime.datetime.now())[0:19].replace(' ', '_')
setup_msg = '\n'.join([timestamp, args.snap_dir]) + '\n' + repr(args)
print('\n' + setup_msg + '\n' + timing_msg, file=ff)
def epoch_reporting(writer, model, train_loss, val_losses, epoch_times, model_improved, epoch, args):
epoch_msg = f'| {epoch: <5} | {train_loss:18.3f} | {val_losses["nll"]:18.3f} | {epoch_times[-1]:13.1f} | {"T" if model_improved else "": >8}'
if args.boosted:
epoch_msg += f' | {model.component: >9} | {str(model.all_trained)[0]: >11}'
rho_str = '[' + ', '.join([f"{wt:4.2f}" for wt in model.rho.data]) + ']'
epoch_msg += f' | {rho_str: >{args.num_components * 6}}' if args.num_components <= 8 else ''
epoch_msg += f' | {val_losses["ratio"]:12.3f}'
epoch_msg += f' | {val_losses["g_nll"]:12.3f}'
if args.tensorboard:
writer.add_scalar('epoch/validation', val_losses['nll'], epoch)
writer.add_scalar('epoch/train', train_loss, epoch)
if args.boosted:
writer.add_scalar('epoch/validation_g', val_losses['g_nll'], epoch)
writer.add_scalar('epoch/validation_ratio', val_losses['ratio'], epoch)
return epoch_msg
def batch_reporting(writer, optimizer, losses, grad_norm, step, args):
if args.tensorboard:
writer.add_scalar('step/train_nll', losses['nll'], step)
if args.max_grad_norm > 0:
writer.add_scalar("grad_norm/grad_norm", grad_norm, step)
if args.boosted:
writer.add_scalar('step/train_g', losses['g_nll'], step)
writer.add_scalar('step/train_G', losses['G_nll'], step)
else:
writer.add_scalar('step/log_pz', losses['log_pz'], step)
writer.add_scalar('step/log_det_jacobian', losses['log_det_jacobian'], step)
for i in range(len(optimizer.param_groups)):
writer.add_scalar(f'lr/lr_{i}', optimizer.param_groups[i]['lr'], step)
def update_learning_rates(prev_lr, model, optimizer, step, args):
for c in range(args.num_components):
optimizer.param_groups[c]['lr'] = prev_lr[c] if c == model.component else 0.0
def update_scheduler(prev_lr, model, optimizer, scheduler, loss, step, args):
if args.lr_schedule == "plateau":
scheduler.step(metrics=loss)
else:
scheduler.step()
if args.boosted:
prev_lr[model.component] = optimizer.param_groups[model.component]['lr']
else:
prev_lr = []
return prev_lr
def init_boosted_lr(model, optimizer, args):
learning_rates = []
for c in range(args.num_components):
if c != model.component:
optimizer.param_groups[c]['lr'] = 0.0
learning_rates.append(optimizer.param_groups[c]['lr'])
for n, param in model.named_parameters():
param.requires_grad = True if n.startswith(f"flows.{model.component}") else False
return learning_rates
def evaluate(model, data_loader, args, results_type=None):
model.eval()
if args.boosted:
G_nll, g_nll = [], []
for (x, _) in data_loader:
x = x.to(args.device)
approximate_fixed_G = False
if approximate_fixed_G:
# randomly sample a component
z_G, _, _, ldj_G, _ = model(x=x, components="1:c")
G_nll_i = -1.0 * (log_normal_standard(z_G, reduce=True, dim=-1, device=args.device) + ldj_G)
G_nll.append(G_nll_i.detach())
else:
G_ll = torch.zeros(x.size(0))
for c in range(model.component + 1):
z_G, _, _, ldj_G, _ = model(x=x, components=c)
if c == 0:
G_ll = log_normal_standard(z_G, reduce=True, dim=-1, device=args.device) + ldj_G
else:
rho_simplex = model.rho[0:(c+1)] / torch.sum(model.rho[0:(c+1)])
last_ll = torch.log(1 - rho_simplex[c]) + G_ll
next_ll = torch.log(rho_simplex[c]) + (log_normal_standard(z_G, reduce=True, dim=-1, device=args.device) + ldj_G)
uG_ll = torch.cat([last_ll.view(x.size(0), 1), next_ll.view(x.size(0), 1)], dim=1)
G_ll = torch.logsumexp(uG_ll, dim=1)
G_nll.append(-1.0 * G_ll.detach())
# track new component progress just for insights
if model.component > 0 or model.all_trained:
z_g, mu_g, var_g, ldj_g, _ = model(x=x, components="c")
g_nll_i = -1.0 * (log_normal_standard(z_g, reduce=True, dim=-1, device=args.device) + ldj_g)
g_nll.append(g_nll_i.detach())
G_nll = torch.cat(G_nll, dim=0)
mean_G_nll = G_nll.mean().item()
losses = {'nll': mean_G_nll}
if model.component > 0 or model.all_trained:
g_nll = torch.cat(g_nll, dim=0)
losses['g_nll'] = g_nll.mean().item()
losses['ratio'] = torch.mean(g_nll - G_nll).item()
else:
losses['g_nll'] = mean_G_nll
losses['ratio'] = 0.0
else:
nll = torch.stack([compute_kl_pq_loss(model, x.to(args.device), args)['nll'].detach() for (x,_) in data_loader], -1).mean().item()
losses = {'nll': nll, 'g_nll': nll}
if args.save_results and results_type is not None:
results_msg = f'{results_type} set loss: {losses["nll"]:.6f}'
logger.info(results_msg + '\n')
with open(args.exp_log, 'a') as ff:
print(results_msg, file=ff)
return losses
def compute_kl_pq_loss(model, x, args):
if args.flow == "boosted":
if model.all_trained or model.component > 0:
# 1. Compute likelihood/weight for each sample
G_ll = torch.zeros(x.size(0))
for c in range(model.component):
z_G, _, _, ldj_G, _ = model(x=x, components=c)
if c == 0:
G_ll = log_normal_standard(z_G, reduce=True, dim=-1, device=args.device) + ldj_G
else:
rho_simplex = model.rho[0:(c+1)] / torch.sum(model.rho[0:(c+1)])
last_ll = torch.log(1 - rho_simplex[c]) + G_ll
next_ll = torch.log(rho_simplex[c]) + (log_normal_standard(z_G, reduce=True, dim=-1, device=args.device) + ldj_G)
uG_ll = torch.cat([last_ll.view(x.size(0), 1), next_ll.view(x.size(0), 1)], dim=1)
G_ll = torch.logsumexp(uG_ll, dim=1)
G_nll = -1.0 * G_ll
# 2. Sample x with replacement, weighted by G_nll
weights = softmax(G_nll)
heuristic = "unity"
if heuristic == "decay":
beta = 1.0 / (2.0**model.component)
elif heuristic == "uniform":
beta = 1.0 / (1.0 + args.num_components)
else:
beta = 1.0 # unity
weights = torch.pow(weights, beta)
if weights.max() > 0.1:
weights = torch.max(torch.min(weights, torch.tensor([0.1], device=args.device)), torch.tensor([0.01], device=args.device))
if weights.sum() != 1.0:
weights = weights / torch.sum(weights)
reweighted_idx = torch.multinomial(weights, x.size(0), replacement=True)
x_resampled = x[reweighted_idx]
# 3. Compute g for resampled observations
z_g, _, _, ldj_g, _ = model(x=x_resampled, components="c")
g_nll = -1.0 * (log_normal_standard(z_g, reduce=True, dim=-1, device=args.device) + ldj_g)
nll = torch.mean(g_nll)
losses = {"nll": nll}
losses["G_nll"] = torch.mean(G_nll)
losses["g_nll"] = torch.mean(g_nll)
else:
# train first boosted component just like a non-boosted model
z_g, _, _, ldj_g, _ = model(x=x, components="c")
g_nll = -1.0 * (log_normal_standard(z_g, reduce=True, dim=-1, device=args.device) + ldj_g)
losses = {"nll": torch.mean(g_nll)}
losses["g_nll"] = torch.mean(g_nll)
losses["G_nll"] = torch.zeros_like(losses['g_nll'])
else:
z, _, _, log_det_j, _ = model(x=x)
log_pz = log_normal_standard(z, reduce=True, dim=-1, device=args.device)
nll = -1.0 * (log_pz + log_det_j)
losses = {"nll": torch.mean(nll)}
losses['log_det_jacobian'] = torch.mean(log_det_j)
losses['log_pz'] = torch.mean(log_pz)
if torch.isnan(losses['nll']).any():
raise ValueError(f"Nan Encountered. nll={losses['nll']}, x={x}, losses={losses}")
return losses
def check_convergence(early_stop_count, losses, best_loss, epoch, stage, args):
"""
Verify if a boosted component has converged
"""
if args.boosted:
c, all_trained = stage
stage_complete = (epoch % args.epochs_per_component == 0)
v_loss = losses['g_nll']
else:
c = stage
stage_complete = False
v_loss = losses['nll']
model_improved = v_loss < best_loss[c]
early_stop_flag = False
if model_improved:
early_stop_count = 0
best_loss[c] = v_loss
elif args.early_stopping_epochs > 0:
# model didn't improve, do we consider it converged yet?
early_stop_count += 1
early_stop_flag = early_stop_count > args.early_stopping_epochs
converged = early_stop_flag or stage_complete
return converged, model_improved, early_stop_count, best_loss
def main(main_args=None):
"""
use main_args to run this script as function in another script
"""
# =========================================================================
# PARSE EXPERIMENT SETTINGS, SETUP SNAPSHOTS DIRECTORY, LOGGING
# =========================================================================
args, kwargs = parse_args(main_args)
# =========================================================================
# LOAD DATA
# =========================================================================
logger.info('LOADING DATA:')
data_loaders, args = load_density_dataset(args)
# =========================================================================
# SAVE EXPERIMENT SETTINGS
# =========================================================================
logger.info(f'EXPERIMENT SETTINGS:\n{args}\n')
torch.save(args, os.path.join(args.snap_dir, 'config.pt'))
# =========================================================================
# INITIALIZE MODEL AND OPTIMIZATION
# =========================================================================
model = init_model(args)
optimizer, scheduler = init_optimizer(model, args)
num_params = sum([param.nelement() for param in model.parameters()])
logger.info(f"MODEL:\nNumber of model parameters={num_params}\n{model}\n")
if args.load:
logger.info(f'LOADING CHECKPOINT FROM PRE-TRAINED MODEL: {args.load}')
init_with_args = args.flow == "boosted" and args.loaded_init_component is not None and args.loaded_all_trained is not None
load(model=model, optimizer=optimizer, path=args.load, args=args, init_with_args=init_with_args, scheduler=scheduler)
logger.info(f'Warning: boosted models may only be loaded to train a new component (until pytorch bug is fixed), optimizer and scheduler will be reset. Non-boosted models may not be loaded at all (will fail).')
optimizer, scheduler = init_optimizer(model, args, verbose=False)
# =========================================================================
# TRAINING
# =========================================================================
if args.epochs > 0:
logger.info('TRAINING:')
if args.tensorboard:
logger.info(f'Follow progress on tensorboard: tb {args.snap_dir}')
train(model, data_loaders, optimizer, scheduler, args)
# =========================================================================
# VALIDATION
# =========================================================================
logger.info('VALIDATION:')
load(model=model, optimizer=optimizer, path=args.snap_dir + 'model.pt', args=args)
val_loss = evaluate(model, data_loaders['val'], args, results_type='Validation')
# =========================================================================
# TESTING
# =========================================================================
if args.testing:
logger.info("TESTING:")
test_loss = evaluate(model, data_loaders['test'], args, results_type='Test')
if __name__ == "__main__":
main()