|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "85c477c3-5f26-4294-a2ea-4042a0c38b7f", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "### How to run\n", |
| 9 | + "\n", |
| 10 | + "```sh\n", |
| 11 | + "# pixi run py-build-examples\n", |
| 12 | + "# pixi run -e examples py-build-notebook\n", |
| 13 | + "# pixi run -e examples jupyter notebook examples/python/notebook/send_table.ipynb\n", |
| 14 | + "```" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 1, |
| 20 | + "id": "e5789224-afa8-4250-9eae-2ca570d46088", |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "from __future__ import annotations\n", |
| 25 | + "\n", |
| 26 | + "import os\n", |
| 27 | + "\n", |
| 28 | + "os.environ[\"RERUN_NOTEBOOK_ASSET\"] = \"inline\"" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": 5, |
| 34 | + "id": "c993d2ab-5bbb-4af0-89a5-1c370b7b9523", |
| 35 | + "metadata": {}, |
| 36 | + "outputs": [], |
| 37 | + "source": [ |
| 38 | + "import rerun as rr\n", |
| 39 | + "\n", |
| 40 | + "import pyarrow as pa\n", |
| 41 | + "import pandas as pd" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "markdown", |
| 46 | + "id": "e317e818-4a96-4c63-a9a0-cce25073b2e5", |
| 47 | + "metadata": {}, |
| 48 | + "source": [ |
| 49 | + "### Send a basic table" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": 3, |
| 55 | + "id": "aea716a4-164c-436f-9b6a-ca6f171214b5", |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [ |
| 58 | + { |
| 59 | + "data": { |
| 60 | + "application/vnd.jupyter.widget-view+json": { |
| 61 | + "model_id": "bd5a1609428f42d689dbde5a2b79d0db", |
| 62 | + "version_major": 2, |
| 63 | + "version_minor": 1 |
| 64 | + }, |
| 65 | + "text/plain": [ |
| 66 | + "Viewer()" |
| 67 | + ] |
| 68 | + }, |
| 69 | + "metadata": {}, |
| 70 | + "output_type": "display_data" |
| 71 | + } |
| 72 | + ], |
| 73 | + "source": [ |
| 74 | + "viewer = rr.notebook.Viewer(width=1024, height=700)\n", |
| 75 | + "viewer.display()\n", |
| 76 | + "viewer.send_table(\n", |
| 77 | + " \"Hello from Notebook\",\n", |
| 78 | + " pa.RecordBatch.from_pydict({\"Column A\": [1, 2, 3], \"Column B\": [\"https://www.rerun.io\", \"Hello\", \"World\"]}),\n", |
| 79 | + ")" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "markdown", |
| 84 | + "id": "59ebc9cb-cb8f-47e9-9beb-a9ff96a7ca17", |
| 85 | + "metadata": {}, |
| 86 | + "source": [ |
| 87 | + "### Send a Pandas dataframe" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": 6, |
| 93 | + "id": "e15fcb31-4e74-47f9-9eba-b6bcdc545c2b", |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [ |
| 96 | + { |
| 97 | + "data": { |
| 98 | + "text/html": [ |
| 99 | + "<div>\n", |
| 100 | + "<style scoped>\n", |
| 101 | + " .dataframe tbody tr th:only-of-type {\n", |
| 102 | + " vertical-align: middle;\n", |
| 103 | + " }\n", |
| 104 | + "\n", |
| 105 | + " .dataframe tbody tr th {\n", |
| 106 | + " vertical-align: top;\n", |
| 107 | + " }\n", |
| 108 | + "\n", |
| 109 | + " .dataframe thead th {\n", |
| 110 | + " text-align: right;\n", |
| 111 | + " }\n", |
| 112 | + "</style>\n", |
| 113 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 114 | + " <thead>\n", |
| 115 | + " <tr style=\"text-align: right;\">\n", |
| 116 | + " <th></th>\n", |
| 117 | + " <th>A</th>\n", |
| 118 | + " <th>B</th>\n", |
| 119 | + " <th>C</th>\n", |
| 120 | + " <th>D</th>\n", |
| 121 | + " </tr>\n", |
| 122 | + " </thead>\n", |
| 123 | + " <tbody>\n", |
| 124 | + " <tr>\n", |
| 125 | + " <th>2013-01-01</th>\n", |
| 126 | + " <td>0.823557</td>\n", |
| 127 | + " <td>-0.290076</td>\n", |
| 128 | + " <td>0.238599</td>\n", |
| 129 | + " <td>-0.629761</td>\n", |
| 130 | + " </tr>\n", |
| 131 | + " <tr>\n", |
| 132 | + " <th>2013-01-02</th>\n", |
| 133 | + " <td>-0.520894</td>\n", |
| 134 | + " <td>-0.817653</td>\n", |
| 135 | + " <td>-0.169291</td>\n", |
| 136 | + " <td>-0.506261</td>\n", |
| 137 | + " </tr>\n", |
| 138 | + " <tr>\n", |
| 139 | + " <th>2013-01-03</th>\n", |
| 140 | + " <td>-0.002897</td>\n", |
| 141 | + " <td>0.752245</td>\n", |
| 142 | + " <td>-0.613818</td>\n", |
| 143 | + " <td>1.111361</td>\n", |
| 144 | + " </tr>\n", |
| 145 | + " <tr>\n", |
| 146 | + " <th>2013-01-04</th>\n", |
| 147 | + " <td>0.938248</td>\n", |
| 148 | + " <td>-1.109515</td>\n", |
| 149 | + " <td>0.536320</td>\n", |
| 150 | + " <td>-1.075220</td>\n", |
| 151 | + " </tr>\n", |
| 152 | + " <tr>\n", |
| 153 | + " <th>2013-01-05</th>\n", |
| 154 | + " <td>0.033130</td>\n", |
| 155 | + " <td>0.771321</td>\n", |
| 156 | + " <td>0.310634</td>\n", |
| 157 | + " <td>-0.595946</td>\n", |
| 158 | + " </tr>\n", |
| 159 | + " <tr>\n", |
| 160 | + " <th>2013-01-06</th>\n", |
| 161 | + " <td>1.205717</td>\n", |
| 162 | + " <td>-2.282729</td>\n", |
| 163 | + " <td>1.290203</td>\n", |
| 164 | + " <td>0.592006</td>\n", |
| 165 | + " </tr>\n", |
| 166 | + " </tbody>\n", |
| 167 | + "</table>\n", |
| 168 | + "</div>" |
| 169 | + ], |
| 170 | + "text/plain": [ |
| 171 | + " A B C D\n", |
| 172 | + "2013-01-01 0.823557 -0.290076 0.238599 -0.629761\n", |
| 173 | + "2013-01-02 -0.520894 -0.817653 -0.169291 -0.506261\n", |
| 174 | + "2013-01-03 -0.002897 0.752245 -0.613818 1.111361\n", |
| 175 | + "2013-01-04 0.938248 -1.109515 0.536320 -1.075220\n", |
| 176 | + "2013-01-05 0.033130 0.771321 0.310634 -0.595946\n", |
| 177 | + "2013-01-06 1.205717 -2.282729 1.290203 0.592006" |
| 178 | + ] |
| 179 | + }, |
| 180 | + "execution_count": 6, |
| 181 | + "metadata": {}, |
| 182 | + "output_type": "execute_result" |
| 183 | + } |
| 184 | + ], |
| 185 | + "source": [ |
| 186 | + "dates = pd.date_range(\"20130101\", periods=6)\n", |
| 187 | + "df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list(\"ABCD\"))\n", |
| 188 | + "df_reset = df.reset_index().rename(columns={'index': 'date'})\n", |
| 189 | + "df" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": 7, |
| 195 | + "id": "837e06ba-ad72-4dff-a6f4-5e7e211a137d", |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [ |
| 198 | + { |
| 199 | + "data": { |
| 200 | + "application/vnd.jupyter.widget-view+json": { |
| 201 | + "model_id": "aa0fb7b7b5884f3fa7f7653b2f81bb39", |
| 202 | + "version_major": 2, |
| 203 | + "version_minor": 1 |
| 204 | + }, |
| 205 | + "text/plain": [ |
| 206 | + "Viewer()" |
| 207 | + ] |
| 208 | + }, |
| 209 | + "metadata": {}, |
| 210 | + "output_type": "display_data" |
| 211 | + } |
| 212 | + ], |
| 213 | + "source": [ |
| 214 | + "viewer = rr.notebook.Viewer(width=1024, height=700)\n", |
| 215 | + "viewer.display()\n", |
| 216 | + "viewer.send_table(\"Hello from Pandas\", pa.RecordBatch.from_pandas(df))" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "code", |
| 221 | + "execution_count": null, |
| 222 | + "id": "7de877bf-f3ba-4f73-867a-1dd7930a2063", |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [] |
| 226 | + } |
| 227 | + ], |
| 228 | + "metadata": { |
| 229 | + "kernelspec": { |
| 230 | + "display_name": "Python 3 (ipykernel)", |
| 231 | + "language": "python", |
| 232 | + "name": "python3" |
| 233 | + }, |
| 234 | + "language_info": { |
| 235 | + "codemirror_mode": { |
| 236 | + "name": "ipython", |
| 237 | + "version": 3 |
| 238 | + }, |
| 239 | + "file_extension": ".py", |
| 240 | + "mimetype": "text/x-python", |
| 241 | + "name": "python", |
| 242 | + "nbconvert_exporter": "python", |
| 243 | + "pygments_lexer": "ipython3", |
| 244 | + "version": "3.11.10" |
| 245 | + } |
| 246 | + }, |
| 247 | + "nbformat": 4, |
| 248 | + "nbformat_minor": 5 |
| 249 | +} |
0 commit comments