-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
173 lines (138 loc) · 6.67 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import time
import os
import numpy as np
import tensorflow as tf
import pickle
import data_input
import similarity
def train_net(train_dir='./train', val_dir=None, max_steps=100000, batch_size=128, max_n_images=1000, n_retrieved=60):
# Load data
sim_dir = './sim'
similarity.create_dataset(train_dir, sim_dir, max_n_images, k_retrieved=n_retrieved)
data = data_input.read_data_sets(train_dir, val_dir, sim_dir, max_n_images)
n_comp_im = data.train.training_sim[0].shape[0]
# Check target f-score
label_dict = data_input.get_label_dict(train_dir, val_dir)
# target_f_score = check_score.check_f_score(data, label_dict)
# print('Target f-score: %.3f' % target_f_score)
# Prepare graph data
with tf.name_scope('data'):
x = tf.placeholder(tf.float32, [None, 2048], name="input")
y_ = tf.placeholder(tf.float32, [None, n_comp_im], name="label")
keep_prob = tf.placeholder(tf.float32, name="dropout_prob")
# Add feature to summary
tf.image_summary('input', tf.reshape(x, [-1, 64, 32, 1]), 10)
# Compute output
with tf.name_scope('fc'):
x_drop = tf.nn.dropout(x, keep_prob)
fc8W = tf.Variable(tf.truncated_normal([2048, n_comp_im], stddev=0.01), name="fc")
fc8b = tf.Variable(tf.zeros([n_comp_im]), name="bias")
y_output = tf.matmul(x_drop, fc8W) + fc8b
prob = tf.nn.sigmoid(y_output)
tf.histogram_summary("weights", fc8W)
tf.histogram_summary("biases", fc8b)
tf.histogram_summary("y", y_output)
# Loss
with tf.name_scope("xent") as scope:
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(y_output, y_))
tf.scalar_summary("cross-entropy", loss)
with tf.name_scope("train") as scope:
train_op = tf.train.AdamOptimizer(1e-4).minimize(loss)
# Saver
saver = tf.train.Saver(tf.all_variables())
# Session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=config)
# Merge summaries
summary_op = tf.merge_all_summaries()
summary_writer = tf.train.SummaryWriter(os.path.join(train_dir, 'logs'), sess.graph)
# Parameters
print('########################################')
print('Epochs: %d' % ((max_steps * batch_size) // max_n_images))
print('Learning rate:', 1e-4)
print('Batch size:', batch_size)
print('Number of training images:', max_n_images)
print('Number of retrieved images:', n_retrieved)
print('########################################')
# Training
tf.initialize_all_variables().run()
if val_dir != None:
val_data = data.validation.next_batch(batch_size)
start = time.time()
for i in range(max_steps):
batch = data.train.next_batch(batch_size)
if i % 1000 == 0:
true_labels = np.float32(batch[1])
train_loss, train_prob, summary = sess.run([loss, prob, summary_op],
feed_dict={
x: batch[0],
y_: true_labels,
keep_prob: 1.0
})
f_score_train = 0
for b_i in range(batch_size):
sim_images_index = np.argpartition(train_prob[b_i], -n_retrieved)[-n_retrieved:]
sim_images_ids = list(data.train.ref_order_ids[sim_images_index])
f_score_train += data_input.score(label_dict, target=batch[3][b_i], selection=sim_images_ids, n=50)
f_score_train /= batch_size
if val_dir != None:
f_score_val = 0
val_prob = prob.eval(feed_dict={
x: val_data[0],
y_: true_labels,
keep_prob: 1.0
})
for b_i in range(batch_size):
sim_images_index = np.argpartition(val_prob[b_i], -n_retrieved)[-n_retrieved:]
sim_images_ids = list(data.train.ref_order_ids[sim_images_index])
f_score_val += data_input.score(label_dict, target=val_data[3][b_i], selection=sim_images_ids, n=50)
f_score_val /= batch_size
end = time.time()
if val_dir != None:
print("[%d/%d] Training loss: %.3f || Scores: %.3f (train) / %.3f (val) (%.0f sec)"
% (i, max_steps, train_loss, f_score_train, f_score_val, (end - start)))
else:
print("[%d/%d] Training loss: %.3f || Scores: %.3f (train) (%.0f sec)"
% (i, max_steps, train_loss, f_score_train, (end - start)))
start = time.time()
summary_writer.add_summary(summary, i)
train_op.run(feed_dict={x: batch[0], y_: true_labels, keep_prob: 0.5})
if (i % 10000 == 0 or ((i + 1) == max_steps and i > 10000)) and i > 0:
checkpoint_path = 'pretrained_model.ckpt'
saver.save(sess, checkpoint_path, global_step=i)
with open('ref_order.pickle', 'wb') as f:
pickle.dump(data.train.ref_order_ids, f)
# F-scores
f_score_train = 0
train_prob = prob.eval(feed_dict={
x: data.train.images,
y_: data.train.training_sim,
keep_prob: 1.0
})
for b_i in range(data.train.images.shape[0]):
sim_images_index = np.argpartition(train_prob[b_i], -n_retrieved)[-n_retrieved:]
sim_images_ids = list(data.train.ref_order_ids[sim_images_index])
f_score_train += data_input.score(label_dict, target=data.train.ids[b_i], selection=sim_images_ids, n=50)
f_score_train /= data.train.images.shape[0]
print('Training F-score: %.4f' % f_score_train)
if val_dir != None:
f_score_val = 0
l = data.validation.images.shape[0]
if data.train.images.shape[0] > data.validation.images.shape[0]:
val_x = data.validation.images
val_y = data.train.training_sim[0:l]
else:
val_x = data.validation.images[0:l]
val_y = data.train.training_sim
train_prob = prob.eval(feed_dict={
x: val_x,
y_: val_y,
keep_prob: 1.0
})
for b_i in range(data.validation.images.shape[0]):
sim_images_index = np.argpartition(train_prob[b_i], -n_retrieved)[-n_retrieved:]
sim_images_ids = list(data.train.ref_order_ids[sim_images_index])
f_score_val += data_input.score(label_dict, target=data.validation.ids[b_i], selection=sim_images_ids, n=50)
f_score_val /= data.validation.images.shape[0]
print('Validation F-score: %.4f' % f_score_val)