|
1 | 1 | RAPIDS Graph documentation
|
2 | 2 | ==========================
|
| 3 | + |
3 | 4 | .. image:: images/cugraph_logo_2.png
|
4 | 5 | :width: 600
|
5 | 6 |
|
6 |
| -*Making graph analytics fast and easy regardless of scale* |
7 |
| - |
8 |
| - |
9 |
| -.. list-table:: RAPIDS Graph covers a range of graph libraries and packages, that includes: |
10 |
| - :widths: 25 25 25 |
11 |
| - :header-rows: 1 |
12 |
| - |
13 |
| - * - Core |
14 |
| - - GNN |
15 |
| - - Extension |
16 |
| - * - :abbr:`cugraph (Python wrapper with lots of convenience functions)` |
17 |
| - - :abbr:`cugraph-ops (GNN aggregators and operators)` |
18 |
| - - :abbr:`cugraph-service (Graph-as-a-service provides both Client and Server packages)` |
19 |
| - * - :abbr:`pylibcugraph (light-weight Python wrapper with no guard rails)` |
20 |
| - - :abbr:`cugraph-dgl (Accelerated extensions for use with the DGL framework)` |
21 |
| - - |
22 |
| - * - :abbr:`libcugraph (C++ API)` |
23 |
| - - :abbr:`cugraph-pyg (Accelerated extensions for use with the PyG framework)` |
24 |
| - - |
25 |
| - * - :abbr:`libcugraph_etl (C++ renumbering function for strings)` |
26 |
| - - :abbr:`wholegraph (Shared memory-based GPU-accelerated GNN training)` |
27 |
| - - |
28 |
| -.. |
29 |
| -| |
30 | 7 |
|
31 | 8 | ~~~~~~~~~~~~
|
32 | 9 | Introduction
|
33 | 10 | ~~~~~~~~~~~~
|
34 | 11 | cuGraph is a library of graph algorithms that seamlessly integrates into the
|
35 | 12 | RAPIDS data science ecosystem and allows the data scientist to easily call
|
36 |
| -graph algorithms using data stored in GPU DataFrames, NetworkX Graphs, or |
37 |
| -even CuPy or SciPy sparse Matrices. |
| 13 | +graph algorithms using data stored in GPU DataFrames, NetworkX Graphs, or even |
| 14 | +CuPy or SciPy sparse Matrices. Our major integration effort with NetworkX |
| 15 | +allows for **zero code change** GPU acceleration through the use of the |
| 16 | +nx-cugraph backend. NetworkX and the nx-cugraph backend offer a seamless |
| 17 | +transition to GPU accelerated graph analytics for NetworkX users with access to |
| 18 | +a supported GPU. |
| 19 | + |
| 20 | +Getting started with cuGraph |
| 21 | + |
| 22 | +Required hardware/software for cuGraph and `RAPIDS <https://docs.rapids.ai/user-guide>`_ |
| 23 | + * NVIDIA GPU, Volta architecture or later, with `compute capability <https://developer.nvidia.com/cuda-gpus> 7.0+`_ |
| 24 | + * CUDA 11.2-11.8, 12.0-12.5 |
| 25 | + * Python version 3.10, 3.11, or 3.12 |
| 26 | + * NetworkX version 3.0 or newer in order to use use the nx-cuGraph backend. NetworkX version 3.4 or newer is recommended. (`see below <#cugraph-using-networkx-code>`). |
| 27 | + |
| 28 | +Installation |
| 29 | +The latest RAPIDS System Requirements documentation is located `here <https://docs.rapids.ai/install#system-req>`_. |
| 30 | + |
| 31 | +This includes several ways to set up cuGraph |
| 32 | + |
| 33 | +* From Unix |
| 34 | + |
| 35 | + * `Conda <https://docs.rapids.ai/install/#conda>`_ |
| 36 | + * `Docker <https://docs.rapids.ai/install/#docker>`_ |
| 37 | + * `pip <https://docs.rapids.ai/install/#pip>`_ |
| 38 | + |
| 39 | + |
| 40 | +**Note: Windows use of RAPIDS depends on prior installation of** `WSL2 <https://learn.microsoft.com/en-us/windows/wsl/install>`_. |
| 41 | + |
| 42 | +* From Windows |
38 | 43 |
|
39 |
| -Note: We are redoing all of our documents, please be patient as we update |
40 |
| -the docs and links |
| 44 | + * `Conda <https://docs.rapids.ai/install#wsl-conda>`_ |
| 45 | + * `Docker <https://docs.rapids.ai/install#wsl-docker>`_ |
| 46 | + * `pip <https://docs.rapids.ai/install#wsl-pip>`_ |
41 | 47 |
|
42 |
| -| |
| 48 | + |
| 49 | +cuGraph Using NetworkX Code |
| 50 | + |
| 51 | +cuGraph is now available as a NetworkX backend using `nx-cugraph <https://rapids.ai/nx-cugraph/>`_. |
| 52 | +nx-cugraph offers NetworkX users a **zero code change** option to accelerate |
| 53 | +their existing NetworkX code using an NVIDIA GPU and cuGraph. |
| 54 | + |
| 55 | + |
| 56 | + Cugraph API Example |
| 57 | + |
| 58 | + .. code-block:: python |
| 59 | +
|
| 60 | + import cugraph |
| 61 | + import cudf |
| 62 | +
|
| 63 | + # Create an instance of the popular Zachary Karate Club graph |
| 64 | + from cugraph.datasets import karate |
| 65 | + G = karate.get_graph() |
| 66 | +
|
| 67 | + # Call cugraph.degree_centrality |
| 68 | + vertex_bc = cugraph.degree_centrality(G) |
| 69 | +
|
| 70 | +There are several resources containing cuGraph examples, `the cuGraph notebook repository <https://github.com/rapidsai/cugraph/blob/main/notebooks/README.md>`_ |
| 71 | +has many examples of loading graph data and running algorithms in Jupyter notebooks. |
| 72 | +The `cuGraph test code <https://github.com/rapidsai/cugraph/tree/main/python/cugraph/cugraph/tests>_` contain python scripts setting up and calling cuGraph algorithms. |
| 73 | +A simple example of `testing the degree centrality algorithm <https://github.com/rapidsai/cugraph/blob/main/python/cugraph/cugraph/tests/centrality/test_degree_centrality.py>`_ |
| 74 | +is a good place to start. Some of these show `multi-GPU tests/examples <https://github.com/rapidsai/cugraph/blob/main/python/cugraph/cugraph/tests/centrality/test_degree_centrality_mg.py>`_ with larger data sets as well. |
43 | 75 |
|
44 | 76 | .. toctree::
|
45 | 77 | :maxdepth: 2
|
46 |
| - :caption: Contents: |
47 |
| - |
48 |
| - basics/index |
49 |
| - nx_cugraph/index |
50 |
| - installation/index |
51 |
| - tutorials/index |
52 |
| - graph_support/index |
53 |
| - wholegraph/index |
54 |
| - references/index |
55 |
| - api_docs/index |
| 78 | + |
| 79 | + top_toc |
56 | 80 |
|
57 | 81 | Indices and tables
|
58 | 82 | ==================
|
|
0 commit comments