Skip to content

Commit e6be367

Browse files
acostadonrlratzel
andauthored
Implementing some of the VDR feedback (#4674)
Adding some content and navigation options per VDR, resolves rapidsai/graph_dl#594 resolves rapidsai/graph_dl#593 --------- Co-authored-by: rlratzel <[email protected]>
1 parent f8b9ac3 commit e6be367

File tree

2 files changed

+76
-39
lines changed

2 files changed

+76
-39
lines changed

docs/cugraph/source/index.rst

Lines changed: 63 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -1,58 +1,82 @@
11
RAPIDS Graph documentation
22
==========================
3+
34
.. image:: images/cugraph_logo_2.png
45
:width: 600
56

6-
*Making graph analytics fast and easy regardless of scale*
7-
8-
9-
.. list-table:: RAPIDS Graph covers a range of graph libraries and packages, that includes:
10-
:widths: 25 25 25
11-
:header-rows: 1
12-
13-
* - Core
14-
- GNN
15-
- Extension
16-
* - :abbr:`cugraph (Python wrapper with lots of convenience functions)`
17-
- :abbr:`cugraph-ops (GNN aggregators and operators)`
18-
- :abbr:`cugraph-service (Graph-as-a-service provides both Client and Server packages)`
19-
* - :abbr:`pylibcugraph (light-weight Python wrapper with no guard rails)`
20-
- :abbr:`cugraph-dgl (Accelerated extensions for use with the DGL framework)`
21-
-
22-
* - :abbr:`libcugraph (C++ API)`
23-
- :abbr:`cugraph-pyg (Accelerated extensions for use with the PyG framework)`
24-
-
25-
* - :abbr:`libcugraph_etl (C++ renumbering function for strings)`
26-
- :abbr:`wholegraph (Shared memory-based GPU-accelerated GNN training)`
27-
-
28-
..
29-
|
307

318
~~~~~~~~~~~~
329
Introduction
3310
~~~~~~~~~~~~
3411
cuGraph is a library of graph algorithms that seamlessly integrates into the
3512
RAPIDS data science ecosystem and allows the data scientist to easily call
36-
graph algorithms using data stored in GPU DataFrames, NetworkX Graphs, or
37-
even CuPy or SciPy sparse Matrices.
13+
graph algorithms using data stored in GPU DataFrames, NetworkX Graphs, or even
14+
CuPy or SciPy sparse Matrices. Our major integration effort with NetworkX
15+
allows for **zero code change** GPU acceleration through the use of the
16+
nx-cugraph backend. NetworkX and the nx-cugraph backend offer a seamless
17+
transition to GPU accelerated graph analytics for NetworkX users with access to
18+
a supported GPU.
19+
20+
Getting started with cuGraph
21+
22+
Required hardware/software for cuGraph and `RAPIDS <https://docs.rapids.ai/user-guide>`_
23+
* NVIDIA GPU, Volta architecture or later, with `compute capability <https://developer.nvidia.com/cuda-gpus> 7.0+`_
24+
* CUDA 11.2-11.8, 12.0-12.5
25+
* Python version 3.10, 3.11, or 3.12
26+
* NetworkX version 3.0 or newer in order to use use the nx-cuGraph backend. NetworkX version 3.4 or newer is recommended. (`see below <#cugraph-using-networkx-code>`).
27+
28+
Installation
29+
The latest RAPIDS System Requirements documentation is located `here <https://docs.rapids.ai/install#system-req>`_.
30+
31+
This includes several ways to set up cuGraph
32+
33+
* From Unix
34+
35+
* `Conda <https://docs.rapids.ai/install/#conda>`_
36+
* `Docker <https://docs.rapids.ai/install/#docker>`_
37+
* `pip <https://docs.rapids.ai/install/#pip>`_
38+
39+
40+
**Note: Windows use of RAPIDS depends on prior installation of** `WSL2 <https://learn.microsoft.com/en-us/windows/wsl/install>`_.
41+
42+
* From Windows
3843

39-
Note: We are redoing all of our documents, please be patient as we update
40-
the docs and links
44+
* `Conda <https://docs.rapids.ai/install#wsl-conda>`_
45+
* `Docker <https://docs.rapids.ai/install#wsl-docker>`_
46+
* `pip <https://docs.rapids.ai/install#wsl-pip>`_
4147

42-
|
48+
49+
cuGraph Using NetworkX Code
50+
51+
cuGraph is now available as a NetworkX backend using `nx-cugraph <https://rapids.ai/nx-cugraph/>`_.
52+
nx-cugraph offers NetworkX users a **zero code change** option to accelerate
53+
their existing NetworkX code using an NVIDIA GPU and cuGraph.
54+
55+
56+
Cugraph API Example
57+
58+
.. code-block:: python
59+
60+
import cugraph
61+
import cudf
62+
63+
# Create an instance of the popular Zachary Karate Club graph
64+
from cugraph.datasets import karate
65+
G = karate.get_graph()
66+
67+
# Call cugraph.degree_centrality
68+
vertex_bc = cugraph.degree_centrality(G)
69+
70+
There are several resources containing cuGraph examples, `the cuGraph notebook repository <https://github.com/rapidsai/cugraph/blob/main/notebooks/README.md>`_
71+
has many examples of loading graph data and running algorithms in Jupyter notebooks.
72+
The `cuGraph test code <https://github.com/rapidsai/cugraph/tree/main/python/cugraph/cugraph/tests>_` contain python scripts setting up and calling cuGraph algorithms.
73+
A simple example of `testing the degree centrality algorithm <https://github.com/rapidsai/cugraph/blob/main/python/cugraph/cugraph/tests/centrality/test_degree_centrality.py>`_
74+
is a good place to start. Some of these show `multi-GPU tests/examples <https://github.com/rapidsai/cugraph/blob/main/python/cugraph/cugraph/tests/centrality/test_degree_centrality_mg.py>`_ with larger data sets as well.
4375

4476
.. toctree::
4577
:maxdepth: 2
46-
:caption: Contents:
47-
48-
basics/index
49-
nx_cugraph/index
50-
installation/index
51-
tutorials/index
52-
graph_support/index
53-
wholegraph/index
54-
references/index
55-
api_docs/index
78+
79+
top_toc
5680

5781
Indices and tables
5882
==================

docs/cugraph/source/top_toc.rst

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
.. toctree::
2+
:maxdepth: 2
3+
:caption: cuGraph documentation Contents:
4+
:name: top_toc
5+
6+
basics/index
7+
nx_cugraph/index
8+
installation/index
9+
tutorials/index
10+
graph_support/index
11+
wholegraph/index
12+
references/index
13+
api_docs/index

0 commit comments

Comments
 (0)