-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
258 lines (209 loc) · 8.65 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
Modelling the data with graphs and a map
which shows the susceptible flooding regions - includes interactive features
This file is Copyright (c) 2020 Lorena Buciu, Rafee Rahman, Kevin Yang, Ricky Yi
"""
from typing import List, Tuple, Dict
import csv
import warnings
import python_ta
from python_ta import contracts
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
# New imports 12/13/2020, commented ones are not needed to run
# import math
# import matplotlib.pylab as plt
# from sklearn.metrics import mean_squared_error
from statsmodels.tsa.statespace.sarimax import SARIMAX
# from statsmodels.tsa.seasonal import seasonal_decompose
warnings.filterwarnings("ignore")
################
# DISPLAY GRAPHS
################
def display_graph(data: Dict[str, List[Tuple]]) -> go.Figure():
"""Return a graph of the sea level change over the years.
NOT a predictive model
"""
years = []
levels = []
for row in data:
years.append([pair[0] for pair in data[row]])
levels.append([pair[1] for pair in data[row]])
fig = go.Figure()
fig.add_trace(go.Scatter(x=years[0], y=levels[0], name='TOPEX'))
fig.add_trace(go.Scatter(x=years[1], y=levels[1], name='Jason-1'))
fig.add_trace(go.Scatter(x=years[2], y=levels[2], name='Jason-2'))
fig.add_trace(go.Scatter(x=years[3], y=levels[3], name='Jason-3'))
fig.update_layout(title='Sea Level Anomaly in the North Pacific Ocean from (1992 - 2020)',
xaxis_title='Year',
yaxis_title='Change in Sea Level (mm)',
template='plotly_dark')
return fig
def display_annual_mean(data: str) -> go.Figure():
"""Return a graph of the sea level change over the years.
Can work with the prediction model
"""
df = pd.read_csv(data)
fig = px.scatter(df, x=df['year'], y=df['mean_sea_level'], trendline="ols")
fig.update_layout(title='Mean Sea Level Anomaly in the North Pacific Ocean from (1992 - 2300) '
'- Theil-Sen Regression',
xaxis_title='Year',
yaxis_title='Average Change in Sea Level (mm)',
template='plotly_dark')
return fig
#############
# SARIMAX Model
#############
def predicted_sea_level(file: str) -> go.Figure():
""" Uses training and testing data as well as the SARIMAX import
to predict the future sea level anomoly.
"""
# plt.style.use('dark_background')
df = pd.read_csv(file)
df.columns = ["Month", "Sea_Level"]
df['Month'] = pd.to_datetime(df['Month'])
# Taking only the max value each month per year to condense the data a bit.
new_df = df.groupby(df['Month'].dt.to_period('M'), as_index=False).max()
new_df['Month'] = pd.to_datetime(new_df['Month'])
new_df.set_index("Month", inplace=True)
# print(new_df.to_string())
# new_df.plot()
# Dickey-fuller test
# print(adfuller(df))
# Since data is not stationary, we need SARIMAX (Seasonal)
# decomposed = seasonal_decompose(new_df['Sea_Level'], model='additive')
# Plotting the trend, seasonal, and residual data
# trend = decomposed.trend
# seasonal = decomposed.seasonal
# residual = decomposed.resid
# plt.figure(figsize=(12,8))
# plt.subplot(411)
# plt.plot(new_df, label='Original', color='yellow')
# plt.legend(loc='upper left')
# plt.subplot(412)
# plt.plot(trend, label='Trend', color='yellow')
# plt.legend(loc='upper left')
# plt.subplot(413)
# plt.plot(seasonal, label='Seasonal', color='yellow')
# plt.legend(loc='upper left')
# plt.subplot(414)
# plt.plot(residual, label='Residual', color='yellow')
# plt.legend(loc='upper left')
# plt.show()
# A simulation to provide the P, Q, and D values with the lowest AIC
# arima_model = auto_arima(new_df['Sea_Level'], start_p=1, d=1, start_q=1,
# max_p=5, max_q=5, max_d=5, m=12,
# start_P=0, D=1, start_Q=0, max_P=5, max_D=5, max_Q=5,
# seasonal=True,
# trace=True,
# error_action='ignore',
# surpress_warning=True,
# stepwise=True, n_fits=3)
# print(arima_model.summary())
# Splitting data into train and test data. Then do the forecasting.
# We can't randomly sample, because values have meaning to it, so
# Take 85% from the BEGINNING of the data, and assign it training
# The remainder is for testing.
size = int(len(new_df) * 0.85)
x_train, x_test = new_df[0:size], new_df[size:len(new_df)]
# Fitting a SARIMAX model
model = SARIMAX(x_train['Sea_Level'],
order=(1, 1, 0),
seasonal_order=(3, 1, 0, 12))
result = model.fit(disp=False)
# print(result.summary())
# Now this model is ready for forecasting
# Train prediction
# start_index = 0
# end_index = len(x_train) - 1
# Basically the data moves i+1 index.
# train_prediction = result.predict(start_index, end_index)
# print(x_train.tail())
# print(train_prediction.tail())
# Prediction, from the end of our training data to the end of our actual data.
# start_index = len(x_train)
# end_index = len(new_df) - 1
# prediction = result.predict(start_index, end_index).rename('Predicted sea level')
# Comparing the prediction to the actual/test values and seeing how accurate it is.
# plot predictions and actual values
# prediction.plot(legend=True)
# x_test['Sea_Level'].plot(legend=True)
# Root mean squared error, to see how much error there is.
# rmse_train = math.sqrt(mean_squared_error(x_train, train_prediction))
# print(rmse_train)
# rmse_test = math.sqrt(mean_squared_error(x_test, prediction))
# print(rmse_test)
# Our forecast for the next 20 years (What we want).
forecast = result.predict(start=len(new_df),
end=(len(new_df) - 1) + 30 * 12,
typ='levels').rename('Forecast')
forecast_df = forecast.to_frame('Sea_Level')
fig = go.Figure()
fig.add_trace(go.Scatter(x=x_train.index.tolist(), y=x_train['Sea_Level'].tolist(),
name='Training'))
fig.add_trace(go.Scatter(x=x_test.index.to_list(),
y=x_test['Sea_Level'].tolist(),
name='Test/Actual'))
fig.add_trace(go.Scatter(x=forecast.index.tolist(), y=forecast_df['Sea_Level'].tolist(),
name='Forecast'))
fig.update_layout(title='SARIMAX Model Sea Level Forecast Next 30 Years',
xaxis_title='Year',
yaxis_title='Change in Sea Level (mm)',
template='plotly_dark')
return fig
#############
# DISPLAY MAPS
#############
def display_map() -> go.Figure():
"""Displays the map of the given data
"""
# Main point - Vancouver latitude and longitude
fig = px.scatter_mapbox(lat=[49.2500], lon=[-123.1000],
color_discrete_sequence=['fuchsia'], zoom=3, height=750)
# add points that are at risk of flooding
df = pd.read_csv('below_sea_level.csv')
fig.add_trace(
px.scatter_mapbox(
df,
title='Map of Vancouver Indicating Flood Regions',
lat='lat',
lon='long',
color="elevation",
color_discrete_sequence=['blue'],
opacity=0.1,
zoom=3
).data[0]
)
# set map style
fig.update_layout(mapbox_style='open-street-map',
template='plotly_dark',
mapbox={'center': go.layout.mapbox.Center(lat=mean_coords()[0],
lon=mean_coords()[1]), 'zoom': 10})
fig.update_layout(margin={'r': 0, 't': 0, 'l': 0, 'b': 0})
fig.update_coloraxes(colorscale='RdBu')
return fig
def mean_coords() -> Tuple[float, float]:
"""
Returns the average latitude and longitude of points contained in below_sea_level.csv
"""
lat_total = 0
long_total = 0
cnt = 0
with open('below_sea_level.csv') as file:
reader = csv.reader(file)
# skip header
next(reader)
# accumulate each row
for row in reader:
lat_total += float(row[0])
long_total += float(row[1])
cnt += 1
# return the average
return (lat_total / cnt, long_total / cnt)
if __name__ == '__main__':
python_ta.check_all(config={
'max-line-length': 100,
'disable': ['R1705', 'C0200']
})
python_ta.contracts.check_all_contracts()