1
- Mustela
1
+ OrbitalML
2
2
=======
3
3
4
4
Convert SKLearn pipelines into SQL queries for execution in a database
@@ -14,15 +14,15 @@ See `examples` directory for example pipelines.
14
14
**Note **::
15
15
16
16
Not all transformations and models can be represented as SQL queries,
17
- so Mustela might not be able to implement the specific pipeline you are using.
17
+ so OrbitalML might not be able to implement the specific pipeline you are using.
18
18
19
19
Getting Started
20
20
----------------
21
21
22
- Install Mustela ::
22
+ Install OrbitalML ::
23
23
24
- $ git clone https://github.com/posit-dev/mustela .git
25
- $ pip install ./mustela
24
+ $ git clone https://github.com/posit-dev/orbitalml .git
25
+ $ pip install ./orbitalml
26
26
27
27
Prepare some data::
28
28
@@ -34,7 +34,7 @@ Prepare some data::
34
34
iris = load_iris(as_frame=True)
35
35
iris_x = iris.data.set_axis(COLUMNS, axis=1)
36
36
37
- # SQL and Mustela don't like dots in column names, replace them with underscores
37
+ # SQL and OrbitalML don't like dots in column names, replace them with underscores
38
38
iris_x.columns = COLUMNS = [cname.replace(".", "_") for cname in COLUMNS]
39
39
40
40
X_train, X_test, y_train, y_test = train_test_split(
@@ -57,21 +57,21 @@ Define a Scikit-Learn pipeline and train it::
57
57
)
58
58
pipeline.fit(X_train, y_train)
59
59
60
- Convert the pipeline to Mustela ::
60
+ Convert the pipeline to OrbitalML ::
61
61
62
- import mustela
63
- import mustela .types
62
+ import orbitalml
63
+ import orbitalml .types
64
64
65
- mustela_pipeline = mustela .parse_pipeline(pipeline, features={
66
- "sepal_length": mustela .types.DoubleColumnType(),
67
- "sepal_width": mustela .types.DoubleColumnType(),
68
- "petal_length": mustela .types.DoubleColumnType(),
69
- "petal_width": mustela .types.DoubleColumnType(),
65
+ orbitalml_pipeline = orbitalml .parse_pipeline(pipeline, features={
66
+ "sepal_length": orbitalml .types.DoubleColumnType(),
67
+ "sepal_width": orbitalml .types.DoubleColumnType(),
68
+ "petal_length": orbitalml .types.DoubleColumnType(),
69
+ "petal_width": orbitalml .types.DoubleColumnType(),
70
70
})
71
71
72
72
You can print the pipeline to see the result::
73
73
74
- >>> print(mustela_pipeline )
74
+ >>> print(orbitalml_pipeline )
75
75
76
76
ParsedPipeline(
77
77
features={
@@ -107,7 +107,7 @@ You can print the pipeline to see the result::
107
107
108
108
Now we can generate the SQL from the pipeline::
109
109
110
- sql = mustela .export_sql("DATA_TABLE", mustela_pipeline , dialect="duckdb")
110
+ sql = orbitalml .export_sql("DATA_TABLE", orbitalml_pipeline , dialect="duckdb")
111
111
112
112
And check the resulting query::
113
113
@@ -141,7 +141,7 @@ by running the scikitlearn pipeline on the same set of data::
141
141
Supported Models
142
142
-----------------
143
143
144
- Mustela currently supports the following models:
144
+ OrbitalML currently supports the following models:
145
145
146
146
- Linear Regression
147
147
- Logistic Regression
0 commit comments