@@ -19,8 +19,8 @@ def sad(alpha, trimap, pred_alpha):
19
19
assert (pred_alpha [trimap == 255 ] == 255 ).all ()
20
20
alpha = alpha .astype (np .float64 ) / 255
21
21
pred_alpha = pred_alpha .astype (np .float64 ) / 255
22
- sad = np .abs (pred_alpha - alpha ).sum () / 1000
23
- return sad
22
+ sad_result = np .abs (pred_alpha - alpha ).sum () / 1000
23
+ return sad_result
24
24
25
25
26
26
def mse (alpha , trimap , pred_alpha ):
@@ -35,10 +35,10 @@ def mse(alpha, trimap, pred_alpha):
35
35
pred_alpha = pred_alpha .astype (np .float64 ) / 255
36
36
weight_sum = (trimap == 128 ).sum ()
37
37
if weight_sum != 0 :
38
- mse = ((pred_alpha - alpha )** 2 ).sum () / weight_sum
38
+ mse_result = ((pred_alpha - alpha )** 2 ).sum () / weight_sum
39
39
else :
40
- mse = 0
41
- return mse
40
+ mse_result = 0
41
+ return mse_result
42
42
43
43
44
44
def gradient_error (alpha , trimap , pred_alpha , sigma = 1.4 ):
@@ -100,7 +100,6 @@ def connectivity(alpha, trimap, pred_alpha, step=0.1):
100
100
alpha = alpha .astype (np .float32 ) / 255
101
101
pred_alpha = pred_alpha .astype (np .float32 ) / 255
102
102
103
- height , width = alpha .shape
104
103
thresh_steps = np .arange (0 , 1 + step , step )
105
104
round_down_map = - np .ones_like (alpha )
106
105
for i in range (1 , len (thresh_steps )):
@@ -196,10 +195,10 @@ def psnr(img1, img2, crop_border=0, input_order='HWC'):
196
195
img1 = img1 [crop_border :- crop_border , crop_border :- crop_border , None ]
197
196
img2 = img2 [crop_border :- crop_border , crop_border :- crop_border , None ]
198
197
199
- mse = np .mean ((img1 - img2 )** 2 )
200
- if mse == 0 :
198
+ mse_value = np .mean ((img1 - img2 )** 2 )
199
+ if mse_value == 0 :
201
200
return float ('inf' )
202
- return 20. * np .log10 (255. / np .sqrt (mse ))
201
+ return 20. * np .log10 (255. / np .sqrt (mse_value ))
203
202
204
203
205
204
def _ssim (img1 , img2 ):
@@ -280,7 +279,7 @@ def ssim(img1, img2, crop_border=0, input_order='HWC'):
280
279
return np .array (ssims ).mean ()
281
280
282
281
283
- class L1Evaluation ( object ) :
282
+ class L1Evaluation :
284
283
"""L1 evaluation metric.
285
284
286
285
Args:
@@ -347,8 +346,8 @@ def compute_feature(block):
347
346
# the products of pairs of adjacent coefficients computed along
348
347
# horizontal, vertical and diagonal orientations.
349
348
shifts = [[0 , 1 ], [1 , 0 ], [1 , 1 ], [1 , - 1 ]]
350
- for i in range ( len ( shifts )) :
351
- shifted_block = np .roll (block , shifts [ i ] , axis = (0 , 1 ))
349
+ for shift in shifts :
350
+ shifted_block = np .roll (block , shift , axis = (0 , 1 ))
352
351
alpha , beta_l , beta_r = estimate_aggd_param (block * shifted_block )
353
352
mean = (beta_r - beta_l ) * (gamma (2 / alpha ) / gamma (1 / alpha ))
354
353
feat .extend ([alpha , mean , beta_l , beta_r ])
@@ -408,7 +407,7 @@ def niqe_core(img,
408
407
feat = []
409
408
for idx_w in range (num_block_w ):
410
409
for idx_h in range (num_block_h ):
411
- # process ecah block
410
+ # process each block
412
411
block = img_nomalized [idx_h * block_size_h //
413
412
scale :(idx_h + 1 ) * block_size_h //
414
413
scale , idx_w * block_size_w //
0 commit comments