forked from cimm-kzn/3D-MIL-QSAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
74 lines (55 loc) · 2.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pickle
import joblib
import numpy as np
import pandas as pd
from miqsar.conformer_generation.gen_conformers import gen_confs
from miqsar.descriptor_calculation.rdkit_3d import calc_3d_descriptors
from miqsar.descriptor_calculation.pmapper_3d import calc_pmapper_descriptors
from sklearn.preprocessing import MinMaxScaler
def read_pkl(fname):
with open(fname, 'rb') as f:
while True:
try:
yield pickle.load(f)
except EOFError:
break
def calc_3d_pmapper(dataset_file, nconfs=1, stereo=False, path='.', ncpu=10):
conf_files = gen_confs(dataset_file, nconfs_list=[nconfs], stereo=stereo, path=path, ncpu=ncpu)
for conf in conf_files:
dsc_file = calc_pmapper_descriptors(conf, path=path, ncpu=ncpu, col_clean=None, del_undef=True)
with open(dsc_file, 'rb') as inp:
data = joblib.load(inp)
if 'mol_title' not in data.columns:
data = data.reset_index()
data['mol_id'] = data['mol_id'].str.lower()
fname = dsc_file.split
dsc_file = dsc_file.replace('_proc.pkl', '.csv')
data.to_csv(dsc_file, index=False)
bags, labels, idx = read_data(dsc_file)
return bags, labels, idx
def read_data(fname):
data = pd.read_csv(fname, index_col='mol_id')
data.index = [i.upper() for i in data.index]
data = data.sort_index()
idx = []
bags = []
labels = []
for i in data.index.unique():
bag = data.loc[i:i].drop(['mol_title', 'act'], axis=1).values
label = float(data.loc[i:i]['act'].unique()[0])
bags.append(bag)
labels.append(label)
idx.append(i)
bags = np.array(bags)
labels = np.array(labels)
return bags, labels, idx
def scale_descriptors(X_train, X_test):
scaler = MinMaxScaler()
scaler.fit(np.vstack(X_train))
X_train_scaled = X_train.copy()
X_test_scaled = X_test.copy()
for i, bag in enumerate(X_train):
X_train_scaled[i] = scaler.transform(bag)
for i, bag in enumerate(X_test):
X_test_scaled[i] = scaler.transform(bag)
return X_train_scaled, X_test_scaled