|
| 1 | +import pandas as pd |
| 2 | +import numpy as np |
| 3 | +import io |
| 4 | +import json |
| 5 | +from BBQ_Full.utils import * |
| 6 | +import random |
| 7 | +import re |
| 8 | +import ast |
| 9 | + |
| 10 | +# all possible values of cat |
| 11 | +cats = [ |
| 12 | + "Disability_status", |
| 13 | + "Age", |
| 14 | + "Physical_appearance", |
| 15 | + "SES", |
| 16 | + "Gender_identity", |
| 17 | + "Race_ethnicity", |
| 18 | + "Religion", |
| 19 | + "Nationality", |
| 20 | + "Sexual_orientation", |
| 21 | +] |
| 22 | + |
| 23 | +# read in vocabulary files |
| 24 | +vocab = pd.read_csv("BBQ_full/templates/vocabulary.csv") |
| 25 | +vocab = vocab[vocab.Pilot_include != "No"] |
| 26 | +names_vocab = pd.read_csv("BBQ_full/templates/vocabulary_proper_names.csv") |
| 27 | + |
| 28 | +unknown_options = [ |
| 29 | + "Unknown", |
| 30 | + "Cannot be determined", |
| 31 | + "Can't be determined", |
| 32 | + "Not answerable", |
| 33 | + "Not known", |
| 34 | + "Not enough info", |
| 35 | + "Not enough information", |
| 36 | + "Cannot answer", |
| 37 | + "Can't answer", |
| 38 | + "Undetermined", |
| 39 | +] |
| 40 | + |
| 41 | +# these have items that need to have the argument order manually reversed |
| 42 | +need_stereotyping_subset = [ |
| 43 | + "Race_ethnicity", |
| 44 | + "Religion", |
| 45 | + "Nationality", |
| 46 | + "Sexual_orientation", |
| 47 | +] |
| 48 | + |
| 49 | +# big loop, does everything |
| 50 | +for cat in cats: |
| 51 | + frames = pd.read_csv( |
| 52 | + "BBQ_full/templates/new_templates - %s.csv" % cat, na_filter=False |
| 53 | + ) # get the right template file |
| 54 | + |
| 55 | + dat_file = io.open( |
| 56 | + "BBQ_full/data/%s.jsonl" % cat, "w" |
| 57 | + ) # open the file that all the data will be saved in |
| 58 | + |
| 59 | + the_frames = frames[ |
| 60 | + frames.Ambiguous_Context != "" |
| 61 | + ].reset_index() # get rid of ones that are empty |
| 62 | + frame_cols = the_frames.columns |
| 63 | + |
| 64 | + # initialize item id counter |
| 65 | + nn = 0 |
| 66 | + |
| 67 | + for i in range(len(the_frames)): |
| 68 | + |
| 69 | + # by default, take the words from the vocab that match this category |
| 70 | + # this needs to be done at each iteration because some rows use custom vocab and some don't |
| 71 | + words = vocab[vocab.Category == cat] |
| 72 | + |
| 73 | + # make sure that one of the words used is the target of the bias |
| 74 | + possible_word_list = words.Name.unique().tolist() |
| 75 | + bias_targets = the_frames.Known_stereotyped_groups[i] |
| 76 | + |
| 77 | + # Stereotyped groups info is not relevant for subsetting Names in some categories |
| 78 | + # so only use that for creating the targeted word list when the info is provided, otherwise all possible |
| 79 | + # vocab items are targets |
| 80 | + if (len(bias_targets) > 1) and (cat in need_stereotyping_subset): |
| 81 | + bias_targets = ast.literal_eval(the_frames.Known_stereotyped_groups[i]) |
| 82 | + targeted_word_list = [x for x in possible_word_list if x in bias_targets] |
| 83 | + else: |
| 84 | + targeted_word_list = possible_word_list |
| 85 | + bias_targets = ast.literal_eval(the_frames.Known_stereotyped_groups[i]) |
| 86 | + |
| 87 | + # if the list of bias targets is too big, downsample |
| 88 | + if len(targeted_word_list) > 4: |
| 89 | + word_list = random.sample(targeted_word_list, 5) |
| 90 | + elif len(possible_word_list) < 2: # these will be handled later |
| 91 | + word_list = [] |
| 92 | + else: |
| 93 | + word_list = targeted_word_list |
| 94 | + |
| 95 | + # set really helpful boolean |
| 96 | + # This determines if the NAME1 and NAME2 needs to be a proper name or not |
| 97 | + if "Proper_nouns_only" in frame_cols: |
| 98 | + if the_frames.Proper_nouns_only[i] == "TRUE": |
| 99 | + has_proper_name = True |
| 100 | + else: |
| 101 | + has_proper_name = False |
| 102 | + else: |
| 103 | + has_proper_name = False |
| 104 | + |
| 105 | + # if the word list needs to be further pulled apart within subcategory, do that here |
| 106 | + if "Subcategory" in frame_cols: |
| 107 | + this_subcat = the_frames.Subcategory[i] |
| 108 | + if len(this_subcat) > 1: |
| 109 | + words = words[words.SubCat == this_subcat] |
| 110 | + word_list = words.Name.unique().tolist() |
| 111 | + if len(word_list) > 5: |
| 112 | + word_list = random.sample(word_list, 5) # for downsampling |
| 113 | + else: |
| 114 | + this_subcat = "None" |
| 115 | + else: |
| 116 | + this_subcat = "None" |
| 117 | + |
| 118 | + # check if there's vocab in the Names column that needs to be used |
| 119 | + # info in the Names column always overrides vocab that would otherwise be used |
| 120 | + if "Names" in frame_cols: |
| 121 | + critical_words = the_frames.Names[i] |
| 122 | + if len(critical_words) > 1: |
| 123 | + word_list, new_word_list = return_list_from_string(critical_words) |
| 124 | + else: # still need to initialize this variable if it's one of the cats w/out "Names" |
| 125 | + critical_words = "" |
| 126 | + |
| 127 | + # check if this one needs to use proper names |
| 128 | + if has_proper_name: |
| 129 | + # what to do if this is part of the race_ethnicity subset |
| 130 | + # this needs to pull from the set of first names that have ethnicity information about them |
| 131 | + if cat == "Race_ethnicity": |
| 132 | + if len(bias_targets) >= 1: |
| 133 | + first_names_full = names_vocab[names_vocab.First_last == "first"] |
| 134 | + first_names = first_names_full[ |
| 135 | + first_names_full.ethnicity.isin(bias_targets) |
| 136 | + ] |
| 137 | + else: |
| 138 | + first_names = names_vocab[names_vocab.First_last == "first"] |
| 139 | + word_list = first_names.Name.tolist() |
| 140 | + word_list = random.sample(word_list, 5) # for downsampling |
| 141 | + # what to do if this is part of the gender_identity subset |
| 142 | + # this needs to pull from the set of first names that do not have ethnicity information |
| 143 | + elif cat == "Gender_identity": |
| 144 | + first_names = names_vocab[names_vocab.First_last == "first_only"] |
| 145 | + # specify female so that the other NAME variable can be set to male and there's always a contrast |
| 146 | + female_first_names = first_names[first_names.gender == "F"] |
| 147 | + word_list = female_first_names.Name.tolist() |
| 148 | + word_list = random.sample(word_list, 5) # for downsampling |
| 149 | + # a handful of templates in other categories use proper nouns |
| 150 | + # these don't have to be specific to gender, but should not be ethnically identifying, so pull from the |
| 151 | + # subset that doesn't correlate strongly to one racial/ethnic category |
| 152 | + else: |
| 153 | + first_names = names_vocab[names_vocab.First_last == "first_only"] |
| 154 | + word_list = first_names.Name.tolist() |
| 155 | + word_list = random.sample(word_list, 6) # for downsampling |
| 156 | + |
| 157 | + # iterate over each word in word_list |
| 158 | + for j in range(len(word_list)): |
| 159 | + # initialize variables for later |
| 160 | + Name1_info = None |
| 161 | + Name2_info = None |
| 162 | + rand_wrd1 = "" |
| 163 | + rand_wrd2 = "" |
| 164 | + Name2_info_dict = {} |
| 165 | + |
| 166 | + # current target word |
| 167 | + this_word = word_list[j] |
| 168 | + |
| 169 | + # only create new_word_list here if it wasn't already created through Names column |
| 170 | + if len(critical_words) < 2: |
| 171 | + if (len(bias_targets) > 0) and (cat in need_stereotyping_subset): |
| 172 | + new_word_list = [ |
| 173 | + n for n in possible_word_list if n not in bias_targets |
| 174 | + ] |
| 175 | + if len(new_word_list) > 4: |
| 176 | + new_word_list = random.sample( |
| 177 | + new_word_list, 5 |
| 178 | + ) # downsample when needed |
| 179 | + else: |
| 180 | + new_word_list = [n for n in word_list if n != this_word] |
| 181 | + # for SES, need to check to make sure it's grabbing from the other (low/high) category |
| 182 | + if cat == "SES" and not has_proper_name: |
| 183 | + the_word_cat = words.loc[words["Name"] == this_word, "Info"].iloc[0] |
| 184 | + Name1_info = the_word_cat |
| 185 | + new_options = words[words.Info != the_word_cat] |
| 186 | + new_word_list = new_options.Name.unique().tolist() |
| 187 | + # for gender, keep track of gender of the name picked and select a name of a different gender for the |
| 188 | + # second name variable |
| 189 | + if cat == "Gender_identity" and has_proper_name: |
| 190 | + the_word_gender = first_names.loc[ |
| 191 | + first_names["Name"] == this_word, "gender" |
| 192 | + ].iloc[0] |
| 193 | + Name1_info = the_word_gender |
| 194 | + new_options = first_names[first_names.gender != the_word_gender] |
| 195 | + new_word_list = new_options.Name.unique().tolist() |
| 196 | + new_word_list = random.sample(new_word_list, 5) # for downsampling |
| 197 | + # for race/ethnicity... |
| 198 | + if cat == "Race_ethnicity" and has_proper_name: |
| 199 | + # keep track of gender and ethnicity of the name in question |
| 200 | + the_word_gender = first_names.loc[ |
| 201 | + first_names["Name"] == this_word, "gender" |
| 202 | + ].iloc[0] |
| 203 | + the_word_eth = first_names.loc[ |
| 204 | + first_names["Name"] == this_word, "ethnicity" |
| 205 | + ].iloc[0] |
| 206 | + Name1_info = the_word_gender + "-" + the_word_eth |
| 207 | + # select a last name that matches ethnicity, then put them together |
| 208 | + last_names = names_vocab[ |
| 209 | + (names_vocab.First_last == "last") |
| 210 | + & (names_vocab.ethnicity == the_word_eth) |
| 211 | + ] |
| 212 | + last_names_list = last_names.Name.unique().tolist() |
| 213 | + this_last_name = random.choice(last_names_list) |
| 214 | + this_word = this_word + " " + this_last_name |
| 215 | + # create a list of names for the second name var w/ same gender |
| 216 | + # but ethnicity that's not one of the bias targets for that template |
| 217 | + other_first_names = first_names_full[ |
| 218 | + (~first_names_full.ethnicity.isin(bias_targets)) |
| 219 | + & (first_names_full.gender == the_word_gender) |
| 220 | + ].reset_index() |
| 221 | + other_first_names = other_first_names.sample( |
| 222 | + n=5, replace=False |
| 223 | + ).reset_index() # for downsampling |
| 224 | + other_last_names = names_vocab[ |
| 225 | + (names_vocab.First_last == "last") |
| 226 | + & (~names_vocab.ethnicity.isin(bias_targets)) |
| 227 | + ].reset_index() |
| 228 | + # initialize list and dict to keep track of the second name variables to create |
| 229 | + new_word_list = [] |
| 230 | + Name2_info_dict = {} |
| 231 | + for nam in range(len(other_first_names)): |
| 232 | + frst = other_first_names.Name[nam] |
| 233 | + eth = other_first_names.ethnicity[nam] |
| 234 | + gen = other_first_names.gender[nam] |
| 235 | + Name2_info = gen + "-" + eth |
| 236 | + lst_list = ( |
| 237 | + other_last_names[other_last_names.ethnicity == eth] |
| 238 | + .Name.unique() |
| 239 | + .tolist() |
| 240 | + ) |
| 241 | + lst = random.choice(lst_list) |
| 242 | + new_word_list.append(frst + " " + lst) |
| 243 | + Name2_info_dict[frst + " " + lst] = Name2_info |
| 244 | + |
| 245 | + # iterate over each word in the second word list |
| 246 | + # results in full pairings of every possible vocab pair within the subset |
| 247 | + for k in range(len(new_word_list)): |
| 248 | + this_word_2 = new_word_list[k] |
| 249 | + this_frame_row = the_frames.iloc[[i]].reset_index() |
| 250 | + lex_div = this_frame_row.Lexical_diversity[0] |
| 251 | + |
| 252 | + # Only need to create these values when there's text in lexical diversity |
| 253 | + if len(lex_div) > 1: |
| 254 | + wrdlist1, wrdlist2 = return_list_from_string(lex_div) |
| 255 | + rand_wrd1 = random.choice(wrdlist1) |
| 256 | + if len(wrdlist2) > 1: # sometimes there's not a WORD2 |
| 257 | + rand_wrd2 = random.choice(wrdlist2) |
| 258 | + |
| 259 | + # replace frame text info with value of {{NAME}} and {{WORD}}. Check the value for each column |
| 260 | + new_frame_row = do_slotting( |
| 261 | + this_frame_row, |
| 262 | + frame_cols, |
| 263 | + this_word, |
| 264 | + None, |
| 265 | + this_word_2, |
| 266 | + None, |
| 267 | + lex_div, |
| 268 | + rand_wrd1, |
| 269 | + rand_wrd2, |
| 270 | + ) |
| 271 | + |
| 272 | + # need to record info about the names that were used for easier analysis later |
| 273 | + if ( |
| 274 | + Name1_info is not None |
| 275 | + and cat == "Race_ethnicity" |
| 276 | + and has_proper_name |
| 277 | + ): |
| 278 | + Name2_info = Name2_info_dict[this_word_2] |
| 279 | + elif cat == "Gender_identity" and has_proper_name: |
| 280 | + try: |
| 281 | + Name2_info = first_names.loc[ |
| 282 | + first_names["Name"] == this_word_2, "gender" |
| 283 | + ].iloc[0] |
| 284 | + except IndexError: |
| 285 | + Name2_info = this_word_2 |
| 286 | + if this_frame_row.NAME1_info[0] != "": |
| 287 | + # in some cases, there info both from the name selected and info tracked in an info column |
| 288 | + # in the template. Need to save both of these pieces of info |
| 289 | + if k == 0: |
| 290 | + Name1_info = this_frame_row.NAME1_info[0] + "_" + Name1_info |
| 291 | + Name2_info = this_frame_row.NAME2_info[0] + "_" + Name2_info |
| 292 | + elif cat == "Nationality" or ( |
| 293 | + cat == "SES" and this_subcat == "Occupation" |
| 294 | + ): |
| 295 | + # need to get the relevant info about the name from the vocab file |
| 296 | + Name1_info = vocab.loc[vocab["Name"] == this_word, "Info"].iloc[0] |
| 297 | + Name2_info = vocab.loc[vocab["Name"] == this_word_2, "Info"].iloc[0] |
| 298 | + elif "NAME1_info" in frame_cols: |
| 299 | + # for when the info about the name variables is stored in the templates |
| 300 | + if this_frame_row.NAME1_info[0] != "": |
| 301 | + Name1_info = this_frame_row.NAME1_info[0] |
| 302 | + Name2_info = this_frame_row.NAME2_info[0] |
| 303 | + else: |
| 304 | + Name1_info = this_word |
| 305 | + Name2_info = this_word_2 |
| 306 | + else: |
| 307 | + # if none of the above apply, just store the info as the actual string used in the name |
| 308 | + Name1_info = this_word |
| 309 | + Name2_info = this_word_2 |
| 310 | + |
| 311 | + # create four sets of data, each as a dictionary |
| 312 | + dat_formatted = create_templating_dicts( |
| 313 | + cat, |
| 314 | + new_frame_row, |
| 315 | + this_subcat, |
| 316 | + unknown_options, |
| 317 | + frame_cols, |
| 318 | + bias_targets, |
| 319 | + this_word, |
| 320 | + this_word_2, |
| 321 | + Name1_info, |
| 322 | + Name2_info, |
| 323 | + nn, |
| 324 | + ) |
| 325 | + nn += 4 |
| 326 | + for item in dat_formatted: |
| 327 | + dat_file.write(json.dumps(item, default=str)) |
| 328 | + dat_file.write("\n") |
| 329 | + dat_file.flush() |
| 330 | + |
| 331 | + if ( |
| 332 | + (cat in need_stereotyping_subset) |
| 333 | + or has_proper_name |
| 334 | + or (cat == "SES" and this_subcat == "Occupation") |
| 335 | + ): |
| 336 | + # flip input of this_word and this_word_2 |
| 337 | + new_frame_row = do_slotting( |
| 338 | + this_frame_row, |
| 339 | + frame_cols, |
| 340 | + this_word_2, |
| 341 | + None, |
| 342 | + this_word, |
| 343 | + None, |
| 344 | + lex_div, |
| 345 | + rand_wrd1, |
| 346 | + rand_wrd2, |
| 347 | + ) |
| 348 | + |
| 349 | + # create four sets of data, each as a dictionary |
| 350 | + dat_formatted = create_templating_dicts( |
| 351 | + cat, |
| 352 | + new_frame_row, |
| 353 | + this_subcat, |
| 354 | + unknown_options, |
| 355 | + frame_cols, |
| 356 | + bias_targets, |
| 357 | + this_word_2, |
| 358 | + this_word, |
| 359 | + Name2_info, |
| 360 | + Name1_info, |
| 361 | + nn, |
| 362 | + ) |
| 363 | + nn += 4 |
| 364 | + for item in dat_formatted: |
| 365 | + dat_file.write(json.dumps(item, default=str)) |
| 366 | + dat_file.write("\n") |
| 367 | + dat_file.flush() |
| 368 | + |
| 369 | + print("generated %s sentences total for %s" % (str(nn), cat)) |
| 370 | + |
| 371 | + dat_file.close() |
0 commit comments