Skip to content

Commit 0823f78

Browse files
sarahmaddoxk8s-ci-robot
authored andcommitted
Updated screenshots and UI info for Kubeflow v0.6 (kubeflow#1029)
* WIP Updating screenshots and UI info for v0.6 * Fixed UI text and URLs in pipelines quickstart. * Fixed UI text and clarified Cloud Shell in Pipelines tutorial. * Removed screenshot of Kubeflow central UI as it doesn't show TFJob. * Started updates to notebooks. * Updated port-forwarding instructions for UI. * Updated UI for notebooks. * Finished UI updates for notebooks. * Fixed caps in URL variable.
1 parent cc50aca commit 0823f78

12 files changed

+74
-63
lines changed

content/docs/components/training/tftraining.md

+3-7
Original file line numberDiff line numberDiff line change
@@ -211,7 +211,7 @@ kubectl apply -f tfevent-volume
211211
kubectl apply -f tf_job_mnist.yaml
212212
```
213213
214-
Monitor the job (see the [TFJob docs](/docs/components/tftraining/#monitoring-your-job)):
214+
Monitor the job (see the [detailed guide below](#monitoring-your-job)):
215215
216216
```
217217
kubectl -n kubeflow get tfjob mnist -o yaml
@@ -238,12 +238,8 @@ Typically you can change the following values in the TFJob yaml file:
238238
239239
### Accessing the TFJob dashboard
240240
241-
The TFJob dashboard is available at `<path>/tfjobs/ui/`. Specifically:
242-
243-
* If you're using the central Kubeflow UI, you can access the TFJob dashboard
244-
by clicking **TFJOB DASHBOARD**:
245-
246-
![Central UI](/docs/images/central-ui.png)
241+
The TFJob dashboard has the title **kubeflow/tf-operator**.
242+
You can access it at `<path>/tfjobs/ui/`. Specifically:
247243
248244
* If you followed the
249245
guide to [deploying Kubeflow on GCP](/docs/gke/deploy/), you can

content/docs/gke/pipelines-tutorial.md

+8-2
Original file line numberDiff line numberDiff line change
@@ -87,6 +87,12 @@ Notes:
8787
[clean up your GCP resources](#cleanup) when you've finished with them.
8888
* This guide uses [Cloud Shell][cloud-shell] to manage your GCP environment, to save you the steps of installing [Cloud SDK][cloud-sdk] and [kubectl][kubectl].
8989

90+
### Start your Cloud Shell
91+
92+
Follow the link to activate a
93+
[Cloud Shell environment](https://console.cloud.google.com/cloudshell) in your
94+
browser.
95+
9096
### Set up some handy environment variables
9197

9298
Set up the following environment variables for use throughout the tutorial:
@@ -190,7 +196,7 @@ Deploy Kubeflow on GCP:
190196
alt="Prediction UI"
191197
class="mt-3 mb-3 p-3 border border-info rounded">
192198
193-
1. Click **Pipeline Dashboard** to access the pipelines UI. The pipelines UI
199+
1. Click **Pipelines** to access the pipelines UI. The pipelines UI
194200
looks like this:
195201
<img src="/docs/images/pipelines-ui.png"
196202
alt="Pipelines UI"
@@ -606,7 +612,7 @@ SDK](/docs/pipelines/sdk/sdk-overview/).
606612
[gcp-console-services]: https://console.cloud.google.com/kubernetes/discovery
607613
[cr-tf-models]: https://console.cloud.google.com/gcr/images/tensorflow/GLOBAL/models
608614

609-
[cloud-shell]: https://cloud.google.com/sdk/docs/interactive-gcloud
615+
[cloud-shell]: https://cloud.google.com/shell/
610616
[gcloud-container-clusters-create]: https://cloud.google.com/sdk/gcloud/reference/container/clusters/create
611617
[gcp-machine-types]: https://cloud.google.com/compute/docs/machine-types
612618
[gcp-service-account]: https://cloud.google.com/iam/docs/understanding-service-accounts
40.5 KB
Loading

content/docs/images/central-ui.png

98.8 KB
Loading

content/docs/images/jupyterlink.png

264 KB
Loading
57.7 KB
Loading
41.2 KB
Loading
109 KB
Loading

content/docs/notebooks/setup.md

+22-9
Original file line numberDiff line numberDiff line change
@@ -19,10 +19,11 @@ in Kubeflow.
1919

2020
Summary of steps:
2121

22-
1. Follow the [Kubeflow getting-started guide](/docs/started/getting-started/) to
23-
set up your Kubeflow deployment and open the Kubeflow UI.
22+
1. Follow the [Kubeflow getting-started guide](/docs/started/getting-started/)
23+
to set up your Kubeflow deployment and open the Kubeflow UI.
2424

25-
1. Click **Notebooks** in the left-hand panel of the Kubeflow UI.
25+
1. Click **Notebook Servers** in the left-hand panel of the Kubeflow UI.
26+
1. Choose the **namespace** corresponding to your Kubeflow profile.
2627
1. Click **NEW SERVER** to create a notebook server.
2728
1. When the notebook server provisioning is complete, click **CONNECT**.
2829
1. Click **Upload** to upload an existing notebook, or click **New** to
@@ -58,8 +59,8 @@ getting-started guide for your chosen environment. For example:
5859
5960
## Create a Jupyter notebook server and add a notebook
6061
61-
1. Click **Notebooks** in the left-hand panel of the Kubeflow UI to access the
62-
Jupyter notebook services deployed with Kubeflow:
62+
1. Click **Notebook Servers** in the left-hand panel of the Kubeflow UI to
63+
access the Jupyter notebook services deployed with Kubeflow:
6364
<img src="/docs/images/jupyterlink.png"
6465
alt="Opening notebooks from the Kubeflow UI"
6566
class="mt-3 mb-3 border border-info rounded">
@@ -69,22 +70,34 @@ getting-started guide for your chosen environment. For example:
6970
to your Google Account you may not need to log in again.)
7071
* On all other platforms, sign in using any username and password.
7172
73+
1. Select a namespace:
74+
* Click the namespace dropdown to see the list of available namespaces.
75+
* Choose the namespace that corresponds to your Kubeflow profile. (See
76+
the page on [multi-user isolation](/docs/other-guides/multi-user-overview/)
77+
for more information about namespaces.)
78+
79+
<img src="/docs/images/notebooks-namespace.png"
80+
alt="Selecting a Kubeflow namespace"
81+
class="mt-3 mb-3 border border-info rounded">
82+
7283
1. Click **NEW SERVER** on the **Notebook Servers** page:
7384
7485
<img src="/docs/images/add-notebook-server.png"
7586
alt="The Kubeflow notebook servers page"
7687
class="mt-3 mb-3 border border-info rounded">
7788
78-
You should see the **New Notebook Server** page:
89+
You should see a page for entering details of your new server. Here is a
90+
partial screenshot of the page:
7991
8092
<img src="/docs/images/new-notebook-server.png"
8193
alt="Form for adding a Kubeflow notebook server"
8294
class="mt-3 mb-3 border border-info rounded">
8395
8496
1. Enter a **name** of your choice for the notebook server. The name can
8597
include letters and numbers, but no spaces. For example, `my-first-notebook`.
86-
1. Enter a **namespace** to identify the project group or team to which this
87-
notebook server belongs. The default is `kubeflow`.
98+
1. Kubeflow automatically updates the value in the **namespace** field to
99+
be the same as the namespace that you selected in a previous step. This
100+
ensures that the new notebook server is in a namespace that you can access.
88101
89102
1. Select a Docker **image** for the baseline deployment of your notebook
90103
server. You can choose from a range of *standard* images or specify a
@@ -150,7 +163,7 @@ getting-started guide for your chosen environment. For example:
150163
volumes or specify existing volumes. Kubeflow provisions a
151164
[Kubernetes persistent volume (PV)](https://kubernetes.io/docs/concepts/storage/persistent-volumes/) for each of your data volumes.
152165
153-
1. Click **SPAWN** and wait a while. You should see an entry for your new
166+
1. Click **LAUNCH**. You should see an entry for your new
154167
notebook server on the **Notebook Servers** page, with a spinning indicator in
155168
the **Status** column. It can take a few minutes to set up
156169
the notebook server.

content/docs/other-guides/accessing-uis.md

+33-35
Original file line numberDiff line numberDiff line change
@@ -9,50 +9,45 @@ instructions on how to connect to them.
99

1010
## Accessing Kubeflow web UIs
1111

12-
Kubeflow comes with a number of web UIs, including:
12+
The Kubeflow web UIs include the following:
1313

14-
* Central UI for navigation
15-
* Jupyter notebooks
16-
* TFJob Dashboard
17-
* Katib Dashboard
18-
* Pipelines Dashboard
19-
* Artifact Store Dashboard
14+
* A central **Kubeflow** UI for navigation between the Kubeflow applications.
15+
* **Pipelines** for a Kubeflow Pipelines dashboard
16+
* **Notebook Servers** for Jupyter notebooks.
17+
* **Katib** for hyperparameter tuning.
18+
* **Artifact Store** for tracking of artifact metadata.
19+
* **tf-operator** for a TFJob dashboard.
2020

21-
To make it easy to connect to these UIs Kubeflow provides a left hand navigation
22-
bar for navigating between the different applications.
21+
Instructions below indicate how to connect to the Kubeflow central UI. From
22+
there you can navigate to the different services using the left hand navigation
23+
bar.
2324

24-
Instructions below indicate how to connect to the Kubeflow landing page. From
25-
there you can easily navigate to the different services using the left hand navigation
26-
bar. The landing page looks like this:
25+
The central UI dashboard looks like this:
2726

2827
<img src="/docs/images/central-ui.png"
29-
alt="Kubeflow UI"
28+
alt="Kubeflow central UI"
3029
class="mt-3 mb-3 border border-info rounded">
3130

31+
## URL pattern with Google Cloud Platform (GCP)
3232

33-
## Google Cloud Platform (Kubernetes Engine)
34-
35-
If you followed the guide to [deploying Kubeflow on Google Cloud Platform
36-
(GCP)](/docs/gke/deploy/), Kubeflow
37-
is deployed with Cloud Identity-Aware Proxy (Cloud IAP) or basic authentication,
38-
and the Kubeflow landing page is accessible at a URL of the following pattern:
33+
If you followed the guide to [deploying Kubeflow on GCP](/docs/gke/deploy/),
34+
the Kubeflow central UI is accessible at a URL of the following pattern:
3935

4036
```
41-
https://<name>.endpoints.<project>.cloud.goog/
37+
https://<application-name>.endpoints.<project-id>.cloud.goog/
4238
```
4339

44-
This URL brings up the landing page illustrated above.
40+
The URL brings up the dashboard illustrated above.
4541

46-
When deployed with Cloud IAP, Kubeflow uses the
42+
If you deploy Kubeflow with Cloud Identity-Aware Proxy (IAP), Kubeflow uses the
4743
[Let's Encrypt](https://letsencrypt.org/) service to provide an SSL certificate
4844
for the Kubeflow UI. For troubleshooting issues with your certificate, see the
4945
guide to
5046
[monitoring your Cloud IAP setup](/docs/gke/deploy/monitor-iap-setup/).
5147

52-
## Using Kubectl and port-forwarding
48+
## Using kubectl and port-forwarding
5349

54-
If you're not using the Cloud IAP option or if you haven't yet set up your
55-
Kubeflow endpoint, you can access Kubeflow via `kubectl` and port-forwarding.
50+
You can access Kubeflow via `kubectl` and port-forwarding as follows:
5651

5752
1. Install `kubectl` if you haven't already done so:
5853

@@ -72,18 +67,21 @@ Kubeflow endpoint, you can access Kubeflow via `kubectl` and port-forwarding.
7267
http://localhost:8080/
7368
```
7469
75-
* This will only work if you haven't enabled basic auth or Cloud IAP. If
76-
authentication is enabled requests will be rejected
77-
because you are not connecting over HTTPS and attaching proper credentials.
70+
* Port-forwarding will not work if you're using basic authentication with GCP.
7871
79-
* Depending on how you've configured Kubeflow, not all UIs will work behind port-forwarding to the reverse proxy.
72+
* Depending on how you've configured Kubeflow, not all UIs work behind
73+
port-forwarding to the reverse proxy.
8074
81-
* Some web applications need to be configured to know the base URL they are serving on.
82-
* So if you deployed Kubeflow with an ingress serving at `https://acme.mydomain.com` and configured an application
83-
to be served at the URL `https://acme.mydomain.com/myapp` then the app may not work when served on
84-
`https://localhost:8080/myapp` because the paths do not match.
75+
For some web applications, you need to configure the base URL on which
76+
the app is serving.
77+
78+
For example, if you deployed Kubeflow with an ingress serving at
79+
`https://example.mydomain.com` and configured an application
80+
to be served at the URL `https://example.mydomain.com/myapp`, then the
81+
app may not work when served on
82+
`https://localhost:8080/myapp` because the paths do not match.
8583
8684
## Next steps
8785
88-
See how to [set up your Jupyter notebooks](/docs/notebooks/setup/) in
89-
Kubeflow.
86+
* See how to [access the TFJob dashboard](/docs/components/training/tftraining/).
87+
* [Set up your Jupyter notebooks](/docs/notebooks/setup/) in Kubeflow.

content/docs/pipelines/pipelines-quickstart.md

+7-9
Original file line numberDiff line numberDiff line change
@@ -19,9 +19,7 @@ Kubeflow Pipelines. If you need a more in-depth guide, see the
1919

2020
Follow these steps to deploy Kubeflow and open the pipelines dashboard:
2121

22-
1. Follow the guide to [deploying Kubeflow on GCP](/docs/gke/deploy/),
23-
including the step to deploy Kubeflow using the
24-
[Kubeflow deployment UI](https://deploy.kubeflow.cloud/).
22+
1. Follow the guide to [deploying Kubeflow on GCP](/docs/gke/deploy/).
2523

2624
{{% pipelines-compatibility %}}
2725

@@ -44,7 +42,7 @@ Follow these steps to deploy Kubeflow and open the pipelines dashboard:
4442

4543
1. Run ```kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80``` and go to `http://localhost:8080/`.
4644

47-
1. Click **Pipeline Dashboard** to access the pipelines UI. The pipelines UI looks like
45+
1. Click **Pipelines** to access the pipelines UI. The pipelines UI looks like
4846
this:
4947
<img src="/docs/images/pipelines-ui.png"
5048
alt="Pipelines UI"
@@ -57,13 +55,13 @@ pipelines quickly. The steps below show you how to run a basic sample that
5755
includes some Python operations, but doesn't include a machine learning (ML)
5856
workload:
5957

60-
1. Click the name of the sample, **\[Sample\] Basic - Parallel Join**, on the pipelines
58+
1. Click the name of the sample, **\[Sample\] Basic - Parallel Execution**, on the pipelines
6159
UI:
6260
<img src="/docs/images/click-pipeline-sample.png"
6361
alt="Pipelines UI"
6462
class="mt-3 mb-3 border border-info rounded">
6563

66-
1. Click **Create an experiment**:
64+
1. Click **Create experiment**:
6765
<img src="/docs/images/pipelines-start-experiment.png"
6866
alt="Starting an experiment on the pipelines UI"
6967
class="mt-3 mb-3 border border-info rounded">
@@ -90,7 +88,7 @@ workload:
9088

9189
You can find the source code for the basic parallel join sample in the
9290
[Kubeflow Pipelines
93-
repo](https://github.com/kubeflow/pipelines/blob/master/samples/basic/parallel_join.py).
91+
repo](https://github.com/kubeflow/pipelines/blob/master/samples/core/parallel_join/parallel_join.py).
9492

9593
## Run an ML pipeline
9694

@@ -124,7 +122,7 @@ Follow these steps to set up the necessary GCP services and run the sample:
124122
alt="XGBoost sample on the pipelines UI"
125123
class="mt-3 mb-3 border border-info rounded">
126124

127-
1. Click **Create an experiment**.
125+
1. Click **Create experiment**.
128126
1. Follow the prompts to create an **experiment** and then create a **run**.
129127
Supply the following **run parameters**:
130128

@@ -163,7 +161,7 @@ Follow these steps to set up the necessary GCP services and run the sample:
163161

164162
You can find the source code for the XGBoost training sample in the
165163
[Kubeflow Pipelines
166-
repo](https://github.com/kubeflow/pipelines/tree/master/samples/xgboost-spark).
164+
repo](https://github.com/kubeflow/pipelines/tree/master/samples/core/xgboost-spark).
167165

168166
## Clean up your GCP environment
169167

Original file line numberDiff line numberDiff line change
@@ -1,3 +1,3 @@
1-
<pre><code>export NAMESPACE=kubeflow
1+
<pre><code>export NAMESPACE=istio-system
22
kubectl port-forward svc/ambassador -n ${NAMESPACE} 8080:80
33
</code></pre>

0 commit comments

Comments
 (0)