forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_dp_model.py
154 lines (134 loc) · 4.85 KB
/
test_dp_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# SPDX-License-Identifier: LGPL-3.0-or-later
import unittest
import numpy as np
from deepmd.dpmodel.descriptor import (
DescrptSeA,
)
from deepmd.dpmodel.fitting import (
InvarFitting,
)
from deepmd.dpmodel.model.ener_model import (
EnergyModel,
)
from ...seed import (
GLOBAL_SEED,
)
from .case_single_frame_with_nlist import (
TestCaseSingleFrameWithNlist,
TestCaseSingleFrameWithoutNlist,
)
class TestDPModelLower(unittest.TestCase, TestCaseSingleFrameWithNlist):
def setUp(self):
TestCaseSingleFrameWithNlist.setUp(self)
def test_self_consistency(
self,
):
nf, nloc, nnei = self.nlist.shape
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
mixed_types=ds.mixed_types(),
)
type_map = ["foo", "bar"]
md0 = EnergyModel(ds, ft, type_map=type_map)
md1 = EnergyModel.deserialize(md0.serialize())
ret0 = md0.call_lower(self.coord_ext, self.atype_ext, self.nlist)
ret1 = md1.call_lower(self.coord_ext, self.atype_ext, self.nlist)
np.testing.assert_allclose(ret0["energy"], ret1["energy"])
np.testing.assert_allclose(ret0["energy_redu"], ret1["energy_redu"])
def test_prec_consistency(self):
rng = np.random.default_rng(GLOBAL_SEED)
nf, nloc, nnei = self.nlist.shape
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
mixed_types=ds.mixed_types(),
)
nfp, nap = 2, 3
type_map = ["foo", "bar"]
# fparam, aparam are converted to coordinate precision by model
fparam = rng.normal(size=[self.nf, nfp])
aparam = rng.normal(size=[self.nf, nloc, nap])
md1 = EnergyModel(ds, ft, type_map=type_map)
args64 = [self.coord_ext, self.atype_ext, self.nlist]
args64[0] = args64[0].astype(np.float64)
args32 = [self.coord_ext, self.atype_ext, self.nlist]
args32[0] = args32[0].astype(np.float32)
model_l_ret_64 = md1.call_lower(*args64, fparam=fparam, aparam=aparam)
model_l_ret_32 = md1.call_lower(*args32, fparam=fparam, aparam=aparam)
for ii in model_l_ret_32.keys():
if model_l_ret_32[ii] is None:
continue
if ii[-4:] == "redu":
self.assertEqual(model_l_ret_32[ii].dtype, np.float64)
else:
self.assertEqual(model_l_ret_32[ii].dtype, np.float32)
if ii != "mask":
self.assertEqual(model_l_ret_64[ii].dtype, np.float64)
else:
self.assertEqual(model_l_ret_64[ii].dtype, np.int32)
np.testing.assert_allclose(
model_l_ret_32[ii],
model_l_ret_64[ii],
)
class TestDPModel(unittest.TestCase, TestCaseSingleFrameWithoutNlist):
def setUp(self):
TestCaseSingleFrameWithoutNlist.setUp(self)
def test_prec_consistency(self):
rng = np.random.default_rng(GLOBAL_SEED)
nf, nloc = self.atype.shape
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
mixed_types=ds.mixed_types(),
)
nfp, nap = 2, 3
type_map = ["foo", "bar"]
# fparam, aparam are converted to coordinate precision by model
fparam = rng.normal(size=[self.nf, nfp])
aparam = rng.normal(size=[self.nf, nloc, nap])
md1 = EnergyModel(ds, ft, type_map=type_map)
args64 = [self.coord, self.atype, self.cell]
args64[0] = args64[0].astype(np.float64)
args64[2] = args64[2].astype(np.float64)
args32 = [self.coord, self.atype, self.cell]
args32[0] = args32[0].astype(np.float32)
args32[2] = args32[2].astype(np.float32)
model_l_ret_64 = md1.call(*args64, fparam=fparam, aparam=aparam)
model_l_ret_32 = md1.call(*args32, fparam=fparam, aparam=aparam)
for ii in model_l_ret_32.keys():
if model_l_ret_32[ii] is None:
continue
if ii[-4:] == "redu":
self.assertEqual(model_l_ret_32[ii].dtype, np.float64)
else:
self.assertEqual(model_l_ret_32[ii].dtype, np.float32)
if ii != "mask":
self.assertEqual(model_l_ret_64[ii].dtype, np.float64)
else:
self.assertEqual(model_l_ret_64[ii].dtype, np.int32)
np.testing.assert_allclose(
model_l_ret_32[ii],
model_l_ret_64[ii],
)