forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmake_model.py
529 lines (467 loc) · 18.6 KB
/
make_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# SPDX-License-Identifier: LGPL-3.0-or-later
from typing import (
Optional,
)
import array_api_compat
import numpy as np
from deepmd.dpmodel.atomic_model.base_atomic_model import (
BaseAtomicModel,
)
from deepmd.dpmodel.common import (
GLOBAL_ENER_FLOAT_PRECISION,
GLOBAL_NP_FLOAT_PRECISION,
PRECISION_DICT,
RESERVED_PRECISON_DICT,
NativeOP,
)
from deepmd.dpmodel.model.base_model import (
BaseModel,
)
from deepmd.dpmodel.output_def import (
FittingOutputDef,
ModelOutputDef,
OutputVariableCategory,
OutputVariableOperation,
check_operation_applied,
)
from deepmd.dpmodel.utils import (
build_neighbor_list,
extend_coord_with_ghosts,
nlist_distinguish_types,
normalize_coord,
)
from .transform_output import (
communicate_extended_output,
fit_output_to_model_output,
)
def make_model(T_AtomicModel: type[BaseAtomicModel]):
"""Make a model as a derived class of an atomic model.
The model provide two interfaces.
1. the `call_lower`, that takes extended coordinates, atyps and neighbor list,
and outputs the atomic and property and derivatives (if required) on the extended region.
2. the `call`, that takes coordinates, atypes and cell and predicts
the atomic and reduced property, and derivatives (if required) on the local region.
Parameters
----------
T_AtomicModel
The atomic model.
Returns
-------
CM
The model.
"""
class CM(NativeOP, BaseModel):
def __init__(
self,
*args,
# underscore to prevent conflict with normal inputs
atomic_model_: Optional[T_AtomicModel] = None,
**kwargs,
):
BaseModel.__init__(self)
if atomic_model_ is not None:
self.atomic_model: T_AtomicModel = atomic_model_
else:
self.atomic_model: T_AtomicModel = T_AtomicModel(*args, **kwargs)
self.precision_dict = PRECISION_DICT
# not supported by flax
# self.reverse_precision_dict = RESERVED_PRECISON_DICT
self.global_np_float_precision = GLOBAL_NP_FLOAT_PRECISION
self.global_ener_float_precision = GLOBAL_ENER_FLOAT_PRECISION
def model_output_def(self):
"""Get the output def for the model."""
return ModelOutputDef(self.atomic_output_def())
def model_output_type(self) -> list[str]:
"""Get the output type for the model."""
output_def = self.model_output_def()
var_defs = output_def.var_defs
vars = [
kk
for kk, vv in var_defs.items()
if vv.category == OutputVariableCategory.OUT
]
return vars
def call(
self,
coord,
atype,
box: Optional[np.ndarray] = None,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
do_atomic_virial: bool = False,
) -> dict[str, np.ndarray]:
"""Return model prediction.
Parameters
----------
coord
The coordinates of the atoms.
shape: nf x (nloc x 3)
atype
The type of atoms. shape: nf x nloc
box
The simulation box. shape: nf x 9
fparam
frame parameter. nf x ndf
aparam
atomic parameter. nf x nloc x nda
do_atomic_virial
If calculate the atomic virial.
Returns
-------
ret_dict
The result dict of type dict[str,np.ndarray].
The keys are defined by the `ModelOutputDef`.
"""
nframes, nloc = atype.shape[:2]
cc, bb, fp, ap, input_prec = self.input_type_cast(
coord, box=box, fparam=fparam, aparam=aparam
)
del coord, box, fparam, aparam
if bb is not None:
coord_normalized = normalize_coord(
cc.reshape(nframes, nloc, 3),
bb.reshape(nframes, 3, 3),
)
else:
coord_normalized = cc.copy()
extended_coord, extended_atype, mapping = extend_coord_with_ghosts(
coord_normalized, atype, bb, self.get_rcut()
)
nlist = build_neighbor_list(
extended_coord,
extended_atype,
nloc,
self.get_rcut(),
self.get_sel(),
distinguish_types=not self.mixed_types(),
)
extended_coord = extended_coord.reshape(nframes, -1, 3)
model_predict_lower = self.call_lower(
extended_coord,
extended_atype,
nlist,
mapping,
fparam=fp,
aparam=ap,
do_atomic_virial=do_atomic_virial,
)
model_predict = communicate_extended_output(
model_predict_lower,
self.model_output_def(),
mapping,
do_atomic_virial=do_atomic_virial,
)
model_predict = self.output_type_cast(model_predict, input_prec)
return model_predict
def call_lower(
self,
extended_coord: np.ndarray,
extended_atype: np.ndarray,
nlist: np.ndarray,
mapping: Optional[np.ndarray] = None,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
do_atomic_virial: bool = False,
):
"""Return model prediction. Lower interface that takes
extended atomic coordinates and types, nlist, and mapping
as input, and returns the predictions on the extended region.
The predictions are not reduced.
Parameters
----------
extended_coord
coodinates in extended region. nf x (nall x 3).
extended_atype
atomic type in extended region. nf x nall.
nlist
neighbor list. nf x nloc x nsel.
mapping
mapps the extended indices to local indices. nf x nall.
fparam
frame parameter. nf x ndf
aparam
atomic parameter. nf x nloc x nda
do_atomic_virial
whether calculate atomic virial
Returns
-------
result_dict
the result dict, defined by the `FittingOutputDef`.
"""
nframes, nall = extended_atype.shape[:2]
extended_coord = extended_coord.reshape(nframes, -1, 3)
nlist = self.format_nlist(
extended_coord,
extended_atype,
nlist,
extra_nlist_sort=self.need_sorted_nlist_for_lower(),
)
cc_ext, _, fp, ap, input_prec = self.input_type_cast(
extended_coord, fparam=fparam, aparam=aparam
)
del extended_coord, fparam, aparam
model_predict = self.forward_common_atomic(
cc_ext,
extended_atype,
nlist,
mapping=mapping,
fparam=fp,
aparam=ap,
do_atomic_virial=do_atomic_virial,
)
model_predict = self.output_type_cast(model_predict, input_prec)
return model_predict
def forward_common_atomic(
self,
extended_coord: np.ndarray,
extended_atype: np.ndarray,
nlist: np.ndarray,
mapping: Optional[np.ndarray] = None,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
do_atomic_virial: bool = False,
):
atomic_ret = self.atomic_model.forward_common_atomic(
extended_coord,
extended_atype,
nlist,
mapping=mapping,
fparam=fparam,
aparam=aparam,
)
return fit_output_to_model_output(
atomic_ret,
self.atomic_output_def(),
extended_coord,
do_atomic_virial=do_atomic_virial,
)
forward_lower = call_lower
def input_type_cast(
self,
coord: np.ndarray,
box: Optional[np.ndarray] = None,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
) -> tuple[
np.ndarray,
Optional[np.ndarray],
Optional[np.ndarray],
Optional[np.ndarray],
str,
]:
"""Cast the input data to global float type."""
input_prec = RESERVED_PRECISON_DICT[self.precision_dict[coord.dtype.name]]
###
### type checking would not pass jit, convert to coord prec anyway
###
_lst: list[Optional[np.ndarray]] = [
vv.astype(coord.dtype) if vv is not None else None
for vv in [box, fparam, aparam]
]
box, fparam, aparam = _lst
if input_prec == RESERVED_PRECISON_DICT[self.global_np_float_precision]:
return coord, box, fparam, aparam, input_prec
else:
pp = self.global_np_float_precision
return (
coord.astype(pp),
box.astype(pp) if box is not None else None,
fparam.astype(pp) if fparam is not None else None,
aparam.astype(pp) if aparam is not None else None,
input_prec,
)
def output_type_cast(
self,
model_ret: dict[str, np.ndarray],
input_prec: str,
) -> dict[str, np.ndarray]:
"""Convert the model output to the input prec."""
do_cast = (
input_prec != RESERVED_PRECISON_DICT[self.global_np_float_precision]
)
pp = self.precision_dict[input_prec]
odef = self.model_output_def()
for kk in odef.keys():
if kk not in model_ret.keys():
# do not return energy_derv_c if not do_atomic_virial
continue
if check_operation_applied(odef[kk], OutputVariableOperation.REDU):
model_ret[kk] = (
model_ret[kk].astype(self.global_ener_float_precision)
if model_ret[kk] is not None
else None
)
elif do_cast:
model_ret[kk] = (
model_ret[kk].astype(pp) if model_ret[kk] is not None else None
)
return model_ret
def format_nlist(
self,
extended_coord: np.ndarray,
extended_atype: np.ndarray,
nlist: np.ndarray,
extra_nlist_sort: bool = False,
):
"""Format the neighbor list.
1. If the number of neighbors in the `nlist` is equal to sum(self.sel),
it does nothong
2. If the number of neighbors in the `nlist` is smaller than sum(self.sel),
the `nlist` is pad with -1.
3. If the number of neighbors in the `nlist` is larger than sum(self.sel),
the nearest sum(sel) neighbors will be preseved.
Known limitations:
In the case of not self.mixed_types, the nlist is always formatted.
May have side effact on the efficiency.
Parameters
----------
extended_coord
coodinates in extended region. nf x nall x 3
extended_atype
atomic type in extended region. nf x nall
nlist
neighbor list. nf x nloc x nsel
extra_nlist_sort
whether to forcibly sort the nlist.
Returns
-------
formated_nlist
the formated nlist.
"""
n_nf, n_nloc, n_nnei = nlist.shape
mixed_types = self.mixed_types()
ret = self._format_nlist(
extended_coord,
nlist,
sum(self.get_sel()),
extra_nlist_sort=extra_nlist_sort,
)
if not mixed_types:
ret = nlist_distinguish_types(ret, extended_atype, self.get_sel())
return ret
def _format_nlist(
self,
extended_coord: np.ndarray,
nlist: np.ndarray,
nnei: int,
extra_nlist_sort: bool = False,
):
xp = array_api_compat.array_namespace(extended_coord, nlist)
n_nf, n_nloc, n_nnei = nlist.shape
extended_coord = extended_coord.reshape([n_nf, -1, 3])
nall = extended_coord.shape[1]
rcut = self.get_rcut()
if n_nnei < nnei:
# make a copy before revise
ret = xp.concat(
[
nlist,
-1 * xp.ones([n_nf, n_nloc, nnei - n_nnei], dtype=nlist.dtype),
],
axis=-1,
)
if n_nnei > nnei or extra_nlist_sort:
n_nf, n_nloc, n_nnei = nlist.shape
# make a copy before revise
m_real_nei = nlist >= 0
ret = xp.where(m_real_nei, nlist, 0)
coord0 = extended_coord[:, :n_nloc, :]
index = ret.reshape(n_nf, n_nloc * n_nnei, 1).repeat(3, axis=2)
coord1 = xp.take_along_axis(extended_coord, index, axis=1)
coord1 = coord1.reshape(n_nf, n_nloc, n_nnei, 3)
rr = xp.linalg.norm(coord0[:, :, None, :] - coord1, axis=-1)
rr = xp.where(m_real_nei, rr, float("inf"))
rr, ret_mapping = xp.sort(rr, axis=-1), xp.argsort(rr, axis=-1)
ret = xp.take_along_axis(ret, ret_mapping, axis=2)
ret = xp.where(rr > rcut, -1, ret)
ret = ret[..., :nnei]
# not extra_nlist_sort and n_nnei <= nnei:
elif n_nnei == nnei:
ret = nlist
else:
pass
assert ret.shape[-1] == nnei
return ret
def do_grad_r(
self,
var_name: Optional[str] = None,
) -> bool:
"""Tell if the output variable `var_name` is r_differentiable.
if var_name is None, returns if any of the variable is r_differentiable.
"""
return self.atomic_model.do_grad_r(var_name)
def do_grad_c(
self,
var_name: Optional[str] = None,
) -> bool:
"""Tell if the output variable `var_name` is c_differentiable.
if var_name is None, returns if any of the variable is c_differentiable.
"""
return self.atomic_model.do_grad_c(var_name)
def change_type_map(
self, type_map: list[str], model_with_new_type_stat=None
) -> None:
"""Change the type related params to new ones, according to `type_map` and the original one in the model.
If there are new types in `type_map`, statistics will be updated accordingly to `model_with_new_type_stat` for these new types.
"""
self.atomic_model.change_type_map(type_map=type_map)
def serialize(self) -> dict:
return self.atomic_model.serialize()
@classmethod
def deserialize(cls, data) -> "CM":
return cls(atomic_model_=T_AtomicModel.deserialize(data))
def get_dim_fparam(self) -> int:
"""Get the number (dimension) of frame parameters of this atomic model."""
return self.atomic_model.get_dim_fparam()
def get_dim_aparam(self) -> int:
"""Get the number (dimension) of atomic parameters of this atomic model."""
return self.atomic_model.get_dim_aparam()
def get_sel_type(self) -> list[int]:
"""Get the selected atom types of this model.
Only atoms with selected atom types have atomic contribution
to the result of the model.
If returning an empty list, all atom types are selected.
"""
return self.atomic_model.get_sel_type()
def is_aparam_nall(self) -> bool:
"""Check whether the shape of atomic parameters is (nframes, nall, ndim).
If False, the shape is (nframes, nloc, ndim).
"""
return self.atomic_model.is_aparam_nall()
def get_rcut(self) -> float:
"""Get the cut-off radius."""
return self.atomic_model.get_rcut()
def get_type_map(self) -> list[str]:
"""Get the type map."""
return self.atomic_model.get_type_map()
def get_nsel(self) -> int:
"""Returns the total number of selected neighboring atoms in the cut-off radius."""
return self.atomic_model.get_nsel()
def get_nnei(self) -> int:
"""Returns the total number of selected neighboring atoms in the cut-off radius."""
return self.atomic_model.get_nnei()
def get_sel(self) -> list[int]:
"""Returns the number of selected atoms for each type."""
return self.atomic_model.get_sel()
def mixed_types(self) -> bool:
"""If true, the model
1. assumes total number of atoms aligned across frames;
2. uses a neighbor list that does not distinguish different atomic types.
If false, the model
1. assumes total number of atoms of each atom type aligned across frames;
2. uses a neighbor list that distinguishes different atomic types.
"""
return self.atomic_model.mixed_types()
def has_message_passing(self) -> bool:
"""Returns whether the model has message passing."""
return self.atomic_model.has_message_passing()
def need_sorted_nlist_for_lower(self) -> bool:
"""Returns whether the model needs sorted nlist when using `forward_lower`."""
return self.atomic_model.need_sorted_nlist_for_lower()
def atomic_output_def(self) -> FittingOutputDef:
"""Get the output def of the atomic model."""
return self.atomic_model.atomic_output_def()
def get_ntypes(self) -> int:
"""Get the number of types."""
return len(self.get_type_map())
return CM