forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathenv.py
515 lines (449 loc) · 14.9 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Module that sets tensorflow working environment and exports inportant constants."""
import ctypes
import logging
import os
import platform
from configparser import (
ConfigParser,
)
from importlib import (
import_module,
reload,
)
from pathlib import (
Path,
)
from typing import (
TYPE_CHECKING,
Any,
Dict,
Tuple,
)
import numpy as np
from packaging.version import (
Version,
)
import deepmd.lib
from deepmd.env import (
GLOBAL_ENER_FLOAT_PRECISION,
GLOBAL_NP_FLOAT_PRECISION,
global_float_prec,
)
if TYPE_CHECKING:
from types import (
ModuleType,
)
def dlopen_library(module: str, filename: str):
"""Dlopen a library from a module.
Parameters
----------
module : str
The module name.
filename : str
The library filename pattern.
"""
try:
m = import_module(module)
except ModuleNotFoundError:
pass
else:
libs = sorted(Path(m.__path__[0]).glob(filename))
# hope that there is only one version installed...
if len(libs):
ctypes.CDLL(str(libs[0].absolute()))
# dlopen pip cuda library before tensorflow
if platform.system() == "Linux":
dlopen_library("nvidia.cuda_runtime.lib", "libcudart.so*")
dlopen_library("nvidia.cublas.lib", "libcublasLt.so*")
dlopen_library("nvidia.cublas.lib", "libcublas.so*")
dlopen_library("nvidia.cufft.lib", "libcufft.so*")
dlopen_library("nvidia.curand.lib", "libcurand.so*")
dlopen_library("nvidia.cusolver.lib", "libcusolver.so*")
dlopen_library("nvidia.cusparse.lib", "libcusparse.so*")
dlopen_library("nvidia.cudnn.lib", "libcudnn.so*")
# import tensorflow v1 compatability
try:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
except ImportError:
import tensorflow as tf
try:
import tensorflow.compat.v2 as tfv2
except ImportError:
tfv2 = None
__all__ = [
"GLOBAL_CONFIG",
"GLOBAL_TF_FLOAT_PRECISION",
"GLOBAL_NP_FLOAT_PRECISION",
"GLOBAL_ENER_FLOAT_PRECISION",
"global_float_prec",
"global_cvt_2_tf_float",
"global_cvt_2_ener_float",
"MODEL_VERSION",
"SHARED_LIB_DIR",
"SHARED_LIB_MODULE",
"default_tf_session_config",
"reset_default_tf_session_config",
"op_module",
"op_grads_module",
"TRANSFER_PATTERN",
"FITTING_NET_PATTERN",
"EMBEDDING_NET_PATTERN",
"TYPE_EMBEDDING_PATTERN",
"ATTENTION_LAYER_PATTERN",
"REMOVE_SUFFIX_DICT",
"TF_VERSION",
]
SHARED_LIB_MODULE = "lib"
SHARED_LIB_DIR = Path(deepmd.lib.__path__[0])
CONFIG_FILE = SHARED_LIB_DIR / "run_config.ini"
# Python library version
try:
tf_py_version = tf.version.VERSION
except AttributeError:
tf_py_version = tf.__version__
EMBEDDING_NET_PATTERN = str(
r"filter_type_\d+/matrix_\d+_\d+|"
r"filter_type_\d+/bias_\d+_\d+|"
r"filter_type_\d+/idt_\d+_\d+|"
r"filter_type_all/matrix_\d+|"
r"filter_type_all/matrix_\d+_\d+|"
r"filter_type_all/matrix_\d+_\d+_\d+|"
r"filter_type_all/bias_\d+|"
r"filter_type_all/bias_\d+_\d+|"
r"filter_type_all/bias_\d+_\d+_\d+|"
r"filter_type_all/idt_\d+|"
r"filter_type_all/idt_\d+_\d+|"
)
FITTING_NET_PATTERN = str(
r"layer_\d+/matrix|"
r"layer_\d+_type_\d+/matrix|"
r"layer_\d+/bias|"
r"layer_\d+_type_\d+/bias|"
r"layer_\d+/idt|"
r"layer_\d+_type_\d+/idt|"
r"final_layer/matrix|"
r"final_layer_type_\d+/matrix|"
r"final_layer/bias|"
r"final_layer_type_\d+/bias|"
# layer_name
r"share_.+_type_\d/matrix|"
r"share_.+_type_\d/bias|"
r"share_.+_type_\d/idt|"
r"share_.+/matrix|"
r"share_.+/bias|"
r"share_.+/idt|"
)
TYPE_EMBEDDING_PATTERN = str(
r"type_embed_net+/matrix_\d+|"
r"type_embed_net+/bias_\d+|"
r"type_embed_net+/idt_\d+|"
)
ATTENTION_LAYER_PATTERN = str(
r"attention_layer_\d+/c_query/matrix|"
r"attention_layer_\d+/c_query/bias|"
r"attention_layer_\d+/c_key/matrix|"
r"attention_layer_\d+/c_key/bias|"
r"attention_layer_\d+/c_value/matrix|"
r"attention_layer_\d+/c_value/bias|"
r"attention_layer_\d+/c_out/matrix|"
r"attention_layer_\d+/c_out/bias|"
r"attention_layer_\d+/layer_normalization/beta|"
r"attention_layer_\d+/layer_normalization/gamma|"
r"attention_layer_\d+/layer_normalization_\d+/beta|"
r"attention_layer_\d+/layer_normalization_\d+/gamma|"
)
TRANSFER_PATTERN = (
EMBEDDING_NET_PATTERN
+ FITTING_NET_PATTERN
+ TYPE_EMBEDDING_PATTERN
+ str(
r"descrpt_attr/t_avg|"
r"descrpt_attr/t_std|"
r"fitting_attr/t_fparam_avg|"
r"fitting_attr/t_fparam_istd|"
r"fitting_attr/t_aparam_avg|"
r"fitting_attr/t_aparam_istd|"
r"model_attr/t_tab_info|"
r"model_attr/t_tab_data|"
)
)
REMOVE_SUFFIX_DICT = {
"model_attr/sel_type_{}": "model_attr/sel_type",
"model_attr/output_dim_{}": "model_attr/output_dim",
"_{}/": "/",
# when atom_ener is set
"_{}_1/": "_1/",
"o_energy_{}": "o_energy",
"o_force_{}": "o_force",
"o_virial_{}": "o_virial",
"o_atom_energy_{}": "o_atom_energy",
"o_atom_virial_{}": "o_atom_virial",
"o_dipole_{}": "o_dipole",
"o_global_dipole_{}": "o_global_dipole",
"o_polar_{}": "o_polar",
"o_global_polar_{}": "o_global_polar",
"o_rmat_{}": "o_rmat",
"o_rmat_deriv_{}": "o_rmat_deriv",
"o_nlist_{}": "o_nlist",
"o_rij_{}": "o_rij",
"o_dm_force_{}": "o_dm_force",
"o_dm_virial_{}": "o_dm_virial",
"o_dm_av_{}": "o_dm_av",
"o_wfc_{}": "o_wfc",
}
def set_env_if_empty(key: str, value: str, verbose: bool = True):
"""Set environment variable only if it is empty.
Parameters
----------
key : str
env variable name
value : str
env variable value
verbose : bool, optional
if True action will be logged, by default True
"""
if os.environ.get(key) is None:
os.environ[key] = value
if verbose:
logging.warning(
f"Environment variable {key} is empty. Use the default value {value}"
)
def set_mkl():
"""Tuning MKL for the best performance.
References
----------
TF overview
https://www.tensorflow.org/guide/performance/overview
Fixing an issue in numpy built by MKL
https://github.com/ContinuumIO/anaconda-issues/issues/11367
https://github.com/numpy/numpy/issues/12374
check whether the numpy is built by mkl, see
https://github.com/numpy/numpy/issues/14751
"""
try:
is_mkl = (
np.show_config("dicts")
.get("Build Dependencies", {})
.get("blas", {})
.get("name", "")
.lower()
.startswith("mkl")
)
except TypeError:
is_mkl = "mkl_rt" in np.__config__.get_info("blas_mkl_info").get(
"libraries", []
)
if is_mkl:
set_env_if_empty("KMP_BLOCKTIME", "0")
set_env_if_empty("KMP_AFFINITY", "granularity=fine,verbose,compact,1,0")
reload(np)
def set_tf_default_nthreads():
"""Set TF internal number of threads to default=automatic selection.
Notes
-----
`TF_INTRA_OP_PARALLELISM_THREADS` and `TF_INTER_OP_PARALLELISM_THREADS`
control TF configuration of multithreading.
"""
if (
"OMP_NUM_THREADS" not in os.environ
or "TF_INTRA_OP_PARALLELISM_THREADS" not in os.environ
or "TF_INTER_OP_PARALLELISM_THREADS" not in os.environ
):
logging.warning(
"To get the best performance, it is recommended to adjust "
"the number of threads by setting the environment variables "
"OMP_NUM_THREADS, TF_INTRA_OP_PARALLELISM_THREADS, and "
"TF_INTER_OP_PARALLELISM_THREADS. See "
"https://deepmd.rtfd.io/parallelism/ for more information."
)
set_env_if_empty("TF_INTRA_OP_PARALLELISM_THREADS", "0", verbose=False)
set_env_if_empty("TF_INTER_OP_PARALLELISM_THREADS", "0", verbose=False)
def get_tf_default_nthreads() -> Tuple[int, int]:
"""Get TF paralellism settings.
Returns
-------
Tuple[int, int]
number of `TF_INTRA_OP_PARALLELISM_THREADS` and
`TF_INTER_OP_PARALLELISM_THREADS`
"""
return int(os.environ.get("TF_INTRA_OP_PARALLELISM_THREADS", "0")), int(
os.environ.get("TF_INTER_OP_PARALLELISM_THREADS", "0")
)
def get_tf_session_config() -> Any:
"""Configure tensorflow session.
Returns
-------
Any
session configure object
"""
set_tf_default_nthreads()
intra, inter = get_tf_default_nthreads()
if int(os.environ.get("DP_JIT", 0)):
set_env_if_empty("TF_XLA_FLAGS", "--tf_xla_auto_jit=2")
# pip cuda package
if platform.system() == "Linux":
try:
m = import_module("nvidia.cuda_nvcc")
except ModuleNotFoundError:
pass
else:
cuda_data_dir = str(Path(m.__file__).parent.absolute())
set_env_if_empty(
"XLA_FLAGS", "--xla_gpu_cuda_data_dir=" + cuda_data_dir
)
config = tf.ConfigProto(
gpu_options=tf.GPUOptions(allow_growth=True),
intra_op_parallelism_threads=intra,
inter_op_parallelism_threads=inter,
)
if Version(tf_py_version) >= Version("1.15") and int(
os.environ.get("DP_AUTO_PARALLELIZATION", 0)
):
config.graph_options.rewrite_options.custom_optimizers.add().name = "dpparallel"
return config
default_tf_session_config = get_tf_session_config()
def reset_default_tf_session_config(cpu_only: bool):
"""Limit tensorflow session to CPU or not.
Parameters
----------
cpu_only : bool
If enabled, no GPU device is visible to the TensorFlow Session.
"""
global default_tf_session_config
if cpu_only:
default_tf_session_config.device_count["GPU"] = 0
else:
if "GPU" in default_tf_session_config.device_count:
del default_tf_session_config.device_count["GPU"]
def get_module(module_name: str) -> "ModuleType":
"""Load force module.
Returns
-------
ModuleType
loaded force module
Raises
------
FileNotFoundError
if module is not found in directory
"""
if platform.system() == "Windows":
ext = ".dll"
prefix = ""
# elif platform.system() == "Darwin":
# ext = ".dylib"
else:
ext = ".so"
prefix = "lib"
module_file = (SHARED_LIB_DIR / (prefix + module_name)).with_suffix(ext).resolve()
if not module_file.is_file():
raise FileNotFoundError(f"module {module_name} does not exist")
else:
try:
module = tf.load_op_library(str(module_file))
except tf.errors.NotFoundError as e:
# check CXX11_ABI_FLAG is compatiblity
# see https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
# ABI should be the same
if "CXX11_ABI_FLAG" in tf.__dict__:
tf_cxx11_abi_flag = tf.CXX11_ABI_FLAG
else:
tf_cxx11_abi_flag = tf.sysconfig.CXX11_ABI_FLAG
if TF_CXX11_ABI_FLAG != tf_cxx11_abi_flag:
raise RuntimeError(
"This deepmd-kit package was compiled with "
"CXX11_ABI_FLAG=%d, but TensorFlow runtime was compiled "
"with CXX11_ABI_FLAG=%d. These two library ABIs are "
"incompatible and thus an error is raised when loading %s. "
"You need to rebuild deepmd-kit against this TensorFlow "
"runtime."
% (
TF_CXX11_ABI_FLAG,
tf_cxx11_abi_flag,
module_name,
)
) from e
# different versions may cause incompatibility
# see #406, #447, #557, #774, and #796 for example
# throw a message if versions are different
if TF_VERSION != tf_py_version:
raise RuntimeError(
"The version of TensorFlow used to compile this "
"deepmd-kit package is {}, but the version of TensorFlow "
"runtime you are using is {}. These two versions are "
"incompatible and thus an error is raised when loading {}. "
"You need to install TensorFlow {}, or rebuild deepmd-kit "
"against TensorFlow {}.\nIf you are using a wheel from "
"pypi, you may consider to install deepmd-kit execuating "
"`pip install deepmd-kit --no-binary deepmd-kit` "
"instead.".format(
TF_VERSION,
tf_py_version,
module_name,
TF_VERSION,
tf_py_version,
)
) from e
error_message = (
"This deepmd-kit package is inconsitent with TensorFlow "
f"Runtime, thus an error is raised when loading {module_name}. "
"You need to rebuild deepmd-kit against this TensorFlow "
"runtime."
)
if TF_CXX11_ABI_FLAG == 1:
# #1791
error_message += (
"\nWARNING: devtoolset on RHEL6 and RHEL7 does not support _GLIBCXX_USE_CXX11_ABI=1. "
"See https://bugzilla.redhat.com/show_bug.cgi?id=1546704"
)
raise RuntimeError(error_message) from e
return module
def _get_package_constants(
config_file: Path = CONFIG_FILE,
) -> Dict[str, str]:
"""Read package constants set at compile time by CMake to dictionary.
Parameters
----------
config_file : str, optional
path to CONFIG file, by default "run_config.ini"
Returns
-------
Dict[str, str]
dictionary with package constants
"""
config = ConfigParser()
config.read(config_file)
return dict(config.items("CONFIG"))
GLOBAL_CONFIG = _get_package_constants()
MODEL_VERSION = GLOBAL_CONFIG["model_version"]
TF_VERSION = GLOBAL_CONFIG["tf_version"]
TF_CXX11_ABI_FLAG = int(GLOBAL_CONFIG["tf_cxx11_abi_flag"])
op_module = get_module("deepmd_op")
op_grads_module = get_module("op_grads")
# FLOAT_PREC
GLOBAL_TF_FLOAT_PRECISION = tf.dtypes.as_dtype(GLOBAL_NP_FLOAT_PRECISION)
def global_cvt_2_tf_float(xx: tf.Tensor) -> tf.Tensor:
"""Cast tensor to globally set TF precision.
Parameters
----------
xx : tf.Tensor
input tensor
Returns
-------
tf.Tensor
output tensor cast to `GLOBAL_TF_FLOAT_PRECISION`
"""
return tf.cast(xx, GLOBAL_TF_FLOAT_PRECISION)
def global_cvt_2_ener_float(xx: tf.Tensor) -> tf.Tensor:
"""Cast tensor to globally set energy precision.
Parameters
----------
xx : tf.Tensor
input tensor
Returns
-------
tf.Tensor
output tensor cast to `GLOBAL_ENER_FLOAT_PRECISION`
"""
return tf.cast(xx, GLOBAL_ENER_FLOAT_PRECISION)