|
20 | 20 |
|
21 | 21 | - [AMPlify](https://doi.org/10.1186/s12864-022-08310-4)
|
22 | 22 |
|
23 |
| - > CLi, C., Sutherland, D., Hammond, S. A., Yang, C., Taho, F., Bergman, L., Houston, S., Warren, R. L., Wong, T., Hoang, L., Cameron, C. E., Helbing, C. C., & Birol, I. (2022). AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC genomics, 23(1), 77. [DOI: 10.1186/s12864-022-08310-4](https://doi.org/10.1186/s12864-022-08310-4) |
| 23 | + > Li, C., Sutherland, D., Hammond, S. A., Yang, C., Taho, F., Bergman, L., Houston, S., Warren, R. L., Wong, T., Hoang, L., Cameron, C. E., Helbing, C. C., & Birol, I. (2022). AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC genomics, 23(1), 77. [DOI: 10.1186/s12864-022-08310-4](https://doi.org/10.1186/s12864-022-08310-4) |
24 | 24 |
|
25 | 25 | - [AMRFinderPlus](https://doi.org/10.1038/s41598-021-91456-0)
|
26 | 26 |
|
|
34 | 34 |
|
35 | 35 | > Schwengers, O., Jelonek, L., Dieckmann, M. A., Beyvers, S., Blom, J., & Goesmann, A. (2021). Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microbial Genomics, 7(11). [DOI: 10.1099/mgen.0.000685](https://doi.org/10.1099/mgen.0.000685)
|
36 | 36 |
|
| 37 | +- [bioawk](https://github.com/lh3/bioawk) |
| 38 | + |
| 39 | + > Li, H. (2023). bioawk: BWK awk modified for biological data. Github. Retrieved July 12, 2023, from https://github.com/lh3/bioawk |
| 40 | +
|
| 41 | +- [comBGC](https://github.com/nf-core/funcscan) |
| 42 | + |
| 43 | + > Frangenberg, J., Fellows Yates, J. A., Ibrahim, A., Perelo, L., & Beber, M. E. (2023). nf-core/funcscan: 1.0.0 - German Rollmops - 2023-02-15. https://doi.org/10.5281/zenodo.7643100 |
| 44 | +
|
37 | 45 | - [DeepARG](https://doi.org/10.1186/s40168-018-0401-z)
|
38 | 46 |
|
39 | 47 | > Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P., & Zhang, L. (2018). DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome, 6(1), 23. [DOI: 10.1186/s40168-018-0401-z](https://doi.org/10.1186/s40168-018-0401-z)
|
|
58 | 66 |
|
59 | 67 | > Ibrahim, A. & Perelo, L. (2023). Darcy220606/AMPcombi. [DOI: 10.5281/zenodo.7639121](https://doi.org/10.5281/zenodo.7639121).
|
60 | 68 |
|
| 69 | +- [hAMRonization](https://github.com/pha4ge/hAMRonization) |
| 70 | + |
| 71 | + > Maguire, F., Fornika, D., Mendes, I., Phelan, J., Underwood, A., Witney, A., pvanheus, Manuele, A., Lee, T., amos, & imendes. (2023). pha4ge/hAMRonization: Zenodo Release. Zenodo. https://doi.org/10.5281/ZENODO.8131134 |
| 72 | +
|
61 | 73 | - [HMMER](https://doi.org/10.1371/journal.pcbi.1002195.)
|
62 | 74 |
|
63 | 75 | > Eddy S. R. (2011). Accelerated Profile HMM Searches. PLoS computational biology, 7(10), e1002195. [DOI: 10.1371/journal.pcbi.1002195](https://doi.org/10.1371/journal.pcbi.1002195)
|
|
98 | 110 |
|
99 | 111 | - [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241)
|
100 | 112 |
|
| 113 | + > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241. |
| 114 | +
|
101 | 115 | - [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/)
|
102 |
| - > Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for mobility of compute. PloS one, 12(5), e0177459. [DOI: 10.1371/journal.pone.0177459](https://doi.org/10.1371/journal.pone.0177459) |
| 116 | + |
| 117 | + > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675. |
0 commit comments