|
378 | 378 | "cell_type": "code",
|
379 | 379 | "execution_count": null,
|
380 | 380 | "metadata": {
|
381 |
| - "scrolled": true |
| 381 | + "scrolled": false |
382 | 382 | },
|
383 | 383 | "outputs": [],
|
384 | 384 | "source": [
|
|
415 | 415 | {
|
416 | 416 | "cell_type": "code",
|
417 | 417 | "execution_count": null,
|
418 |
| - "metadata": {}, |
| 418 | + "metadata": { |
| 419 | + "scrolled": false |
| 420 | + }, |
419 | 421 | "outputs": [],
|
420 | 422 | "source": [
|
421 | 423 | "mdf = sumstats.add_mzscored_to_merged_df_adults(merged_df, percentiles_wide) \n",
|
422 | 424 | "mdf['wtz'] = (mdf['weight'] - mdf['Mean_weight'])/mdf['sd_weight']\n",
|
423 | 425 | "mdf['htz'] = (mdf['height'] - mdf['Mean_height'])/mdf['sd_height']\n",
|
424 |
| - "mdf['BMIz'] = (mdf['bmi'] - mdf['Mean_bmi'])/mdf['sd_bmi']\n", |
| 426 | + "mdf['bmiz'] = (mdf['bmi'] - mdf['Mean_bmi'])/mdf['sd_bmi']\n", |
425 | 427 | "mdf.head()\n",
|
426 | 428 | "\n",
|
427 | 429 | "col_opt = {\n",
|
|
438 | 440 | " 'weight_cat': { 'width': 80 },\n",
|
439 | 441 | " 'wtz': { 'width': 50 },\n",
|
440 | 442 | " 'bmi': { 'width': 40 },\n",
|
441 |
| - " 'BMIz': { 'width': 30 },\n", |
| 443 | + " 'bmiz': { 'width': 30 },\n", |
442 | 444 | "}\n",
|
443 | 445 | "g = qgrid.show_grid(charts.top_ten(mdf, 'weight'), precision=3, column_options=col_opt, column_definitions=col_def)\n",
|
444 | 446 | "ind_out = widgets.Output()\n",
|
|
458 | 460 | " charts.overlap_view_adults(obs, subjid, 'WEIGHTKG', True, True, wt_percentiles, bmi_percentiles, ht_percentiles)\n",
|
459 | 461 | " display(plt.show()) \n",
|
460 | 462 | "g.on('selection_changed', handle_selection_change) \n",
|
461 |
| - "widgets.VBox([g, ind_out])\n" |
| 463 | + "widgets.VBox([g, ind_out])" |
462 | 464 | ]
|
463 | 465 | },
|
464 | 466 | {
|
|
496 | 498 | "cell_type": "code",
|
497 | 499 | "execution_count": null,
|
498 | 500 | "metadata": {
|
499 |
| - "scrolled": true |
| 501 | + "scrolled": false |
500 | 502 | },
|
501 | 503 | "outputs": [],
|
502 | 504 | "source": [
|
|
628 | 630 | "def edge25(obs, category, group, sort_order, param):\n",
|
629 | 631 | " filtered_by_cat = obs[(obs.clean_cat == category) & (obs.param == param)]\n",
|
630 | 632 | " # get list of relevant IDs\n",
|
631 |
| - " filtered_sum = filtered_by_cat.groupby('subjid', as_index=False).agg(max_measure=('measurement', 'max'), min_measure=('measurement', 'min'), start_age=('age', 'min'), axis_range=('range', 'mean'))\n", |
| 633 | + " filtered_sum = filtered_by_cat.groupby('subjid', as_index=False).agg(max_measure=('measurement', 'max'), \n", |
| 634 | + " min_measure=('measurement', 'min'), \n", |
| 635 | + " start_age=('ageyears', 'min'), \n", |
| 636 | + " axis_range=('range', 'mean'))\n", |
632 | 637 | " if group == 'largest':\n",
|
633 | 638 | " filtered_sum = filtered_sum.nlargest(25, 'max_measure')\n",
|
634 | 639 | " else:\n",
|
635 | 640 | " filtered_sum = filtered_sum.nsmallest(25, 'min_measure')\n",
|
636 | 641 | " filtered_sum.sort_values(by=[sort_order, 'subjid'], inplace=True)\n",
|
637 |
| - " fig = charts.five_by_five_view(obs, filtered_sum.subjid.values, param, wt_percentiles, ht_percentiles, bmi_percentiles, 'dotted')\n", |
| 642 | + " fig = charts.five_by_five_view(obs, filtered_sum.subjid.values, param, wt_percentiles, ht_percentiles, \n", |
| 643 | + " bmi_percentiles, 'dotted')\n", |
638 | 644 | " plt.show()\n",
|
639 | 645 | " \n",
|
640 |
| - "interact(edge25, obs = fixed(obs_wbmi_mult), category = obs.clean_cat.unique(), \n", |
641 |
| - " group = ['largest', 'smallest'], sort_order = ['max_measure', 'min_measure', 'start_age', 'axis_range'], param = ['WEIGHTKG', 'HEIGHTCM', 'BMI'])" |
| 646 | + "interact(edge25, obs=fixed(obs_wbmi_mult), category=obs.clean_cat.unique(), \n", |
| 647 | + " group=['largest', 'smallest'], sort_order=['max_measure', 'min_measure', 'start_age', 'axis_range'], \n", |
| 648 | + " param=['WEIGHTKG', 'HEIGHTCM', 'BMI']);" |
642 | 649 | ]
|
643 | 650 | },
|
644 | 651 | {
|
|
658 | 665 | "source": [
|
659 | 666 | "all_ids = obs_wbmi['subjid'].unique()\n",
|
660 | 667 | "val = 2431 if 2431 in all_ids else np.random.choice(all_ids, size=1, replace=False)\n",
|
661 |
| - "interact(charts.param_with_percentiles, merged_df = fixed(obs_wbmi),\n", |
662 |
| - " subjid = widgets.Dropdown(options=all_ids, value=val,\n", |
663 |
| - " description='Subject ID:',disabled=False), \n", |
664 |
| - " param = ['BMI', 'WEIGHTKG', 'HEIGHTCM'], wt_df = fixed(wt_percentiles), ht_df = fixed(ht_percentiles), bmi_df = fixed(bmi_percentiles))" |
| 668 | + "interact(charts.param_with_percentiles, merged_df=fixed(obs_wbmi),\n", |
| 669 | + " subjid=widgets.Dropdown(options=all_ids, value=val,\n", |
| 670 | + " description='Subject ID:', disabled=False), \n", |
| 671 | + " param=['BMI', 'WEIGHTKG', 'HEIGHTCM'], wt_df=fixed(wt_percentiles), \n", |
| 672 | + " ht_df=fixed(ht_percentiles), bmi_df=fixed(bmi_percentiles));" |
665 | 673 | ]
|
666 | 674 | },
|
667 | 675 | {
|
|
833 | 841 | "name": "python",
|
834 | 842 | "nbconvert_exporter": "python",
|
835 | 843 | "pygments_lexer": "ipython3",
|
836 |
| - "version": "3.9.9" |
| 844 | + "version": "3.9.16" |
837 | 845 | }
|
838 | 846 | },
|
839 | 847 | "nbformat": 4,
|
|
0 commit comments