|
1 | 1 | import os
|
2 | 2 | import sys
|
3 | 3 | from numbers import Integral, Real
|
4 |
| - |
5 | 4 | try:
|
6 | 5 | from collections import Iterable
|
7 | 6 | except ImportError: # changed in python 3.3
|
8 | 7 | from collections.abc import Iterable
|
9 |
| - |
10 | 8 | import warnings
|
11 | 9 |
|
12 | 10 | import numpy as np
|
13 | 11 | import numpy.random
|
14 | 12 | import matplotlib
|
15 | 13 | from mpl_toolkits.mplot3d import Axes3D
|
16 | 14 |
|
| 15 | +# For Python 3.3.X and above |
| 16 | +if sys.version_info >= (3, 3): |
| 17 | + from collections.abc import Iterable |
| 18 | +else: |
| 19 | + from collections import Iterable |
| 20 | + |
17 | 21 | # Force headless backend for plotting on clusters
|
18 | 22 | if "DISPLAY" not in os.environ:
|
19 | 23 | matplotlib.use('Agg')
|
@@ -609,7 +613,7 @@ def plot_flat_source_regions(geometry, gridsize=250, xlim=None, ylim=None,
|
609 | 613 | if centroids:
|
610 | 614 |
|
611 | 615 | # Populate a NumPy array with the FSR centroid coordinates
|
612 |
| - centroids = np.zeros((num_fsrs, 2), dtype=np.float) |
| 616 | + centroids = np.zeros((num_fsrs, 2), dtype=np.float64) |
613 | 617 | for fsr_id in range(num_fsrs):
|
614 | 618 | coords = geometry.getGlobalFSRCentroidData(fsr_id)
|
615 | 619 | if plane == 'xy':
|
@@ -952,7 +956,7 @@ def plot_energy_fluxes(solver, fsrs, group_bounds=None, norm=True,
|
952 | 956 | for fsr in fsrs:
|
953 | 957 |
|
954 | 958 | # Allocate memory for an array of this FSR's fluxes
|
955 |
| - fluxes = np.zeros(num_groups, dtype=np.float) |
| 959 | + fluxes = np.zeros(num_groups, dtype=np.float64) |
956 | 960 |
|
957 | 961 | # Extract the flux in each energy group
|
958 | 962 | for group in range(num_groups):
|
@@ -1317,7 +1321,7 @@ def plot_spatial_data(domains_to_data, plot_params, get_figure=False):
|
1317 | 1321 | surface = domains_to_data.take(domains.flatten())
|
1318 | 1322 | # If domains-to-data was input as a Python dictionary
|
1319 | 1323 | else:
|
1320 |
| - surface = np.zeros(domains.shape, dtype=np.float) |
| 1324 | + surface = np.zeros(domains.shape, dtype=np.float64) |
1321 | 1325 | for domain_id in domains_to_data:
|
1322 | 1326 | indices = np.where(domains == domain_id)
|
1323 | 1327 | surface[indices] = domains_to_data[domain_id]
|
@@ -1947,7 +1951,7 @@ def _get_pil_image(array, plot_params):
|
1947 | 1951 | from PIL import Image
|
1948 | 1952 |
|
1949 | 1953 | # Convert array to a normalized array of floating point values
|
1950 |
| - float_array = np.zeros(array.shape, dtype=np.float) |
| 1954 | + float_array = np.zeros(array.shape, dtype=np.float64) |
1951 | 1955 | float_array[:,:] = array[:,:]
|
1952 | 1956 | float_array[:,:] /= np.max(float_array)
|
1953 | 1957 |
|
|
0 commit comments