forked from qiwenjjin/AAENet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDemo.py
297 lines (263 loc) · 12.1 KB
/
Demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from __future__ import print_function
try:
raw_input
except:
raw_input = input
import numpy as np
from keras.layers import concatenate
from keras.models import Sequential, Model, load_model
from keras.layers import Input, Dense, LeakyReLU,BatchNormalization
from keras.utils import plot_model
from keras.datasets import mnist
from keras.optimizers import Adam
from losses import SAD
import argparse
import os
import matplotlib.pyplot as plt
from matplotlib import gridspec, colors
from datetime import datetime
from sklearn.manifold import TSNE
from absl import flags
from absl import app
from scipy.io import loadmat, savemat
from keras.callbacks import TensorBoard
import tensorflow as tf
np.set_printoptions(threshold=np.inf)
FLAGS = flags.FLAGS
# General
flags.DEFINE_bool("adversarial", True, "Use Adversarial Autoencoder or regular Autoencoder")
flags.DEFINE_bool("train", False, "Train")
flags.DEFINE_bool("reconstruct", False, "Reconstruct image")
flags.DEFINE_bool("generate", False, "Generate image from latent")
flags.DEFINE_bool("generate_grid", False, "Generate grid of images from latent space (only for 2D latent)")
flags.DEFINE_bool("plot", False, "Plot latent space")
flags.DEFINE_integer("latent_dim", 5, "Latent dimension")
# Train
flags.DEFINE_integer("epochs", 500, "Number of training epochs")
flags.DEFINE_integer("train_samples", 3600, "Number of training samples from MNIST")
flags.DEFINE_integer("batchsize", 40, "Training batchsize")
# Test
flags.DEFINE_integer("test_samples", 3600, "Number of test samples from MNIST")
flags.DEFINE_list("latent_vec", None, "Latent vector (use with --generate flag)")
callbacks = [TensorBoard(
log_dir='./logs'
)
]
mat_contents=loadmat('Synthetic_new.mat')
x=mat_contents['Y']
E=mat_contents['E_init']
E_T=tf.transpose(E)
gaussian_dsitribution=loadmat('dsitribution.mat')
mean=gaussian_dsitribution['mean']
cov=gaussian_dsitribution['cov']
l_vca=0.01
l_2=0
use_bias=False
activation_set=LeakyReLU(0.2)
initializer = initializers.glorot_normal()
rand_x = np.random.RandomState(42)
rand_y = np.random.RandomState(42)
def E_reg(weight_matrix):
print('weight_matrix',weight_matrix.shape)
return l_vca*SAD(weight_matrix,E)+l_2*tf.reduce_mean(tf.matmul(tf.transpose(weight_matrix,perm=[1,0]),weight_matrix))
def create_model(input_dim, latent_dim, verbose=True, save_graph=False):
autoencoder_input = Input(shape=(input_dim,))
generator_input = Input(shape=(input_dim,))
encoder = Sequential()
encoder.add(Dense(latent_dim * 9, input_shape=(input_dim,), activation=activation_set,name='Dense_1'))
encoder.add(Dense(latent_dim * 6, activation=activation_set,name='Dense_2'))
encoder.add(Dense(latent_dim * 3, activation=activation_set,name='Dense_3'))
encoder.add(Dense(latent_dim, use_bias=use_bias, kernel_regularizer=None, kernel_initializer=None,
activation=activation_set))
encoder.add(BatchNormalization())
# Soft Thresholding
encoder.add(utils.SparseReLU(alpha_initializer='zero', alpha_constraint=non_neg(), activity_regularizer=None))
# Sum To One (ASC)
encoder.add(utils.SumToOne(axis=0, name='abundances', activity_regularizer=None))
####################################################################
decoder = Sequential()
decoder.add(Dense(input_dim, input_shape=(latent_dim,), activation='linear', name='endmembers', use_bias=use_bias,
kernel_constraint=non_neg(), kernel_regularizer=E_reg, kernel_initializer=initializer))
#print('weight_Dense_1',weight_Dense_1)
if FLAGS.adversarial:
discriminator = Sequential()
discriminator.add(Dense(intermediate_dim2, input_shape=(latent_dim,), activation='relu'))
discriminator.add(Dense(intermediate_dim1, activation='relu'))
discriminator.add(Dense(1, activation='sigmoid'))
autoencoder= Model(autoencoder_input,decoder(encoder(autoencoder_input)))
autoencoder.compile(optimizer=Adam(lr=1e-4), loss=SAD)
if FLAGS.adversarial:
discriminator.compile(optimizer=Adam(lr=1e-4), loss="binary_crossentropy")
discriminator.trainable = False
generator = Model(generator_input, discriminator(encoder(generator_input)))
generator.compile(optimizer=Adam(lr=1e-4), loss="binary_crossentropy")
if verbose:
print("Autoencoder Architecture")
print(autoencoder.summary())
if FLAGS.adversarial:
print("Discriminator Architecture")
print(discriminator.summary())
print("Generator Architecture")
print(generator.summary())
if save_graph:
plot_model(autoencoder, to_file="autoencoder_graph.png")
if FLAGS.adversarial:
plot_model(discriminator, to_file="discriminator_graph.png")
plot_model(generator, to_file="generator_graph.png")
if FLAGS.adversarial:
return autoencoder, discriminator, generator, encoder, decoder
else:
return autoencoder, None, None, encoder, decoder
def train(n_samples, batch_size, n_epochs):
autoencoder, discriminator, generator, encoder, decoder = create_model(input_dim=200, latent_dim=FLAGS.latent_dim)
past = datetime.now()
for epoch in np.arange(1, n_epochs + 1):
autoencoder_losses = []
if FLAGS.adversarial:
discriminator_losses = []
generator_losses = []
for batch in np.arange(len(x) / batch_size):
start = int(batch * batch_size)
end = int(start + batch_size)
samples = x[start:end]
autoencoder_history = autoencoder.fit(x=samples,y=samples,epochs=1, batch_size=batch_size, validation_split=0.0, verbose=0)
if FLAGS.adversarial:
fake_latent = encoder.predict(samples)
real_sample=np.zeros([batch_size,FLAGS.latent_dim])
real_sample=np.random.multivariate_normal(mean=mean, cov=conv, size=batch_size)
discriminator_input = np.concatenate((fake_latent, real_sample))
discriminator_labels = np.concatenate((np.zeros((batch_size, 1)), np.ones((batch_size, 1))))
discriminator_history = discriminator.fit(x=discriminator_input, y=discriminator_labels, epochs=1, batch_size=batch_size, validation_split=0.0, verbose=0)
generator_history = generator.fit(x=samples, y=np.ones((batch_size, 1)), epochs=1, batch_size=batch_size, validation_split=0.0, verbose=0)
autoencoder_losses.append(autoencoder_history.history["loss"])
if FLAGS.adversarial:
discriminator_losses.append(discriminator_history.history["loss"])
generator_losses.append(generator_history.history["loss"])
now = datetime.now()
print("\nEpoch {}/{} - {:.1f}s".format(epoch, n_epochs, (now - past).total_seconds()))
print("Autoencoder Loss: {}".format(np.mean(autoencoder_losses)))
if FLAGS.adversarial:
print("Discriminator Loss: {}".format(np.mean(discriminator_losses)))
print("Generator Loss: {}".format(np.mean(generator_losses)))
past = now
if epoch % 50 == 0:
print("\nSaving models...")
# autoencoder.save('{}_autoencoder.h5'.format(desc))
encoder.save('{}_encoder.h5'.format(desc))
decoder.save('{}_decoder.h5'.format(desc))
# if FLAGS.adversarial:
# discriminator.save('{}_discriminator.h5'.format(desc))
# generator.save('{}_generator.h5'.format(desc))
# autoencoder.save('{}_autoencoder.h5'.format(desc))
encoder.save('{}_encoder.h5'.format(desc))
decoder.save('{}_decoder.h5'.format(desc))
z_latent= encoder.predict(x, batch_size=1)
return z_latent
# if FLAGS.adversarial:
# discriminator.save('{}_discriminator.h5'.format(desc))
# generator.save('{}_generator.h5'.format(desc))
def reconstruct(n_samples):
encoder = load_model('{}_encoder.h5'.format(desc))
decoder = load_model('{}_decoder.h5'.format(desc))
(x_train, y_train), (x_test, y_test) = mnist.load_data()
choice = np.random.choice(np.arange(n_samples))
original = x_test[choice].reshape(1, 200)
normalize = colors.Normalize(0., 255.)
original = normalize(original)
latent = encoder.predict(original)
reconstruction = decoder.predict(latent)
draw([{"title": "Original", "image": original}, {"title": "Reconstruction", "image": reconstruction}])
def generate(latent=None):
decoder = load_model('{}_decoder.h5'.format(desc))
if latent is None:
latent = np.random.randn(1, FLAGS.latent_dim)
else:
latent = np.array(latent)
sample = decoder.predict(latent.reshape(1, FLAGS.latent_dim))
draw([{"title": "Sample", "image": sample}])
def draw(samples):
fig = plt.figure(figsize=(5 * len(samples), 5))
gs = gridspec.GridSpec(1, len(samples))
for i, sample in enumerate(samples):
ax = plt.Subplot(fig, gs[i])
ax.imshow((sample["image"] * 255.).reshape(60, 60), cmap='gray')
ax.set_xticks([])
ax.set_yticks([])
ax.set_aspect('equal')
ax.set_title(sample["title"])
fig.add_subplot(ax)
plt.show(block=False)
raw_input("Press Enter to Exit")
def generate_grid(latent=None):
decoder = load_model('{}_decoder.h5'.format(desc))
samples = []
for i in np.arange(400):
latent = np.array([(i % 20) * 1.5 - 15., 15. - (i / 20) * 1.5])
samples.append({
"image": decoder.predict(latent.reshape(1, FLAGS.latent_dim))
})
draw_grid(samples)
def draw_grid(samples):
fig = plt.figure(figsize=(15, 15))
gs = gridspec.GridSpec(20, 20, wspace=-.5, hspace=0)
for i, sample in enumerate(samples):
ax = plt.Subplot(fig, gs[i])
ax.imshow((sample["image"] * 255.).reshape(28, 28), cmap='gray')
ax.set_xticks([])
ax.set_yticks([])
ax.set_aspect('equal')
# ax.set_title(sample["title"])
fig.add_subplot(ax)
plt.show(block=False)
raw_input("Press Enter to Exit")
# fig.savefig("images/{}_grid.png".format(desc), bbox_inches="tight", dpi=300)
def plot(n_samples):
encoder = load_model('{}_encoder.h5'.format(desc))
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x = x_test[:n_samples].reshape(n_samples, 200)
y = y_test[:n_samples]
normalize = colors.Normalize(0., 255.)
x = normalize(x)
latent = encoder.predict(x)
if FLAGS.latent_dim > 2:
tsne = TSNE()
print("\nFitting t-SNE, this will take awhile...")
latent = tsne.fit_transform(latent)
fig, ax = plt.subplots()
for label in np.arange(10):
ax.scatter(latent[(y_test == label), 0], latent[(y_test == label), 1], label=label, s=3)
ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
ax.set_aspect('equal')
ax.set_title("Latent Space")
plt.show(block=False)
raw_input("Press Enter to Exit")
# fig.savefig("images/{}_latent.png".format(desc), bbox_inches="tight", dpi=300)
def main(argv):
global desc,intermediate_dim1,intermediate_dim2,intermediate_dim3
original_dim=200
intermediate_dim1 = int(np.ceil(original_dim*1.2) + 5)
intermediate_dim2 = int(max(np.ceil(original_dim/4), FLAGS.latent_dim+2) + 3)
intermediate_dim3 = int(max(np.ceil(original_dim/10), FLAGS.latent_dim+1))
if FLAGS.adversarial:
desc = "aae"
else:
desc = "regular"
if FLAGS.train:
z_latent=train(n_samples=FLAGS.train_samples, batch_size=FLAGS.batchsize, n_epochs=FLAGS.epochs)
savemat('Abundance '+'.mat', {'z_latent':z_latent})
savemat('Endmember' + '.mat', {'E':W})
return z_latent
elif FLAGS.reconstruct:
reconstruct(n_samples=FLAGS.test_samples)
elif FLAGS.generate:
if FLAGS.latent_vec:
assert len(FLAGS.latent_vec) == FLAGS.latent_dim, "Latent vector provided is of dim {}; required dim is {}".format(len(FLAGS.latent_vec), FLAGS.latent_dim)
generate(FLAGS.latent_vec)
else:
generate()
elif FLAGS.generate_grid:
generate_grid()
elif FLAGS.plot:
plot(FLAGS.test_samples)
if __name__ == "__main__":
app.run(main)