@@ -110,28 +110,35 @@ Qed.
110
110
(* package algebra *)
111
111
(****************** *)
112
112
113
- Import GRing.Theory.
114
- Local Open Scope ring_scope.
115
- Notation has_char0 L := ([char L] =i pred0).
116
-
117
113
(********* *)
118
- (* ssralg *)
114
+ (* ssrint *)
119
115
(********* *)
120
116
121
- Lemma iter_addr (V : zmodType) n x y : iter n (+%R x) y = x *+ n + y :> V.
122
- Proof . by elim: n => [|n ih]; rewrite ?add0r //= ih mulrS addrA. Qed .
123
-
124
- Lemma prodrMl {R : comRingType} {I : finType} (A : pred I) (x : R) F :
125
- \prod_(i in A) (x * F i) = x ^+ #|A| * \prod_(i in A) F i.
117
+ Lemma dvdz_charf (R : ringType) (p : nat) :
118
+ p \in [char R] -> forall n : int, (p %| n)%Z = (n%:~R == 0 :> R).
126
119
Proof .
127
- rewrite -sum1_card; elim/big_rec3: _; first by rewrite expr0 mulr1 .
128
- by move=> i y p z iA ->; rewrite mulrACA exprS .
120
+ move=> charRp [] n; rewrite [LHS](dvdn_charf charRp)// .
121
+ by rewrite NegzE abszN rmorphN// oppr_eq0 .
129
122
Qed .
130
123
131
- Lemma expr_sum {R : ringType} {T : Type } (x : R) (F : T -> nat) P s :
132
- x ^+ (\sum_(i <- s | P i) F i) = \prod_(i <- s | P i) x ^+ (F i).
133
- Proof . by apply: big_morph; [exact: exprD | exact: expr0]. Qed .
124
+ (******* *)
125
+ (* poly *)
126
+ (******* *)
127
+
128
+ Local Notation "p ^^ f" := (map_poly f p)
129
+ (at level 30, f at level 30, format "p ^^ f").
134
130
131
+ #[deprecated(since="mathcomp 2.2.0",note="Use polyOverXsubC instead.")]
132
+ Lemma poly_XsubC_over {R : ringType} c (S : {pred R}) (addS : subringPred S)
133
+ (kS : keyed_pred addS): c \in kS -> 'X - c%:P \is a polyOver kS.
134
+ Proof . by move=> cS; rewrite rpredB ?polyOverC ?polyOverX. Qed .
135
+
136
+ #[deprecated(since="mathcomp 2.2.0",note="Use polyOverXnsubC instead.")]
137
+ Lemma poly_XnsubC_over {R : ringType} n c (S : {pred R}) (addS : subringPred S)
138
+ (kS : keyed_pred addS): c \in kS -> 'X^n - c%:P \is a polyOver kS.
139
+ Proof . by move=> cS; rewrite rpredB ?rpredX ?polyOverX ?polyOverC. Qed .
140
+
141
+ #[deprecated(since="mathcomp 2.2.0",note="Use prim_root_natf_eq0 instead.")]
135
142
Lemma prim_root_natf_neq0 (F : fieldType) n (w : F) :
136
143
n.-primitive_root w -> (n%:R != 0 :> F).
137
144
Proof .
@@ -150,125 +157,85 @@ rewrite pfactor_dvdn// ltn_geF// -[k]muln1 logn_Gauss ?logn1//.
150
157
by rewrite logn_gt0 mem_primes p_prime dvdpn n_gt0.
151
158
Qed .
152
159
153
- (********* *)
154
- (* ssrnum *)
155
- (********* *)
156
-
157
- Section ssrnum.
158
- Import Num.Theory.
159
-
160
- Lemma CrealJ (C : numClosedFieldType) :
161
- {mono (@conjC C) : x / x \is Num.real}.
160
+ #[deprecated(since="mathcomp 2.2.0",note="Use prim_root_eq0 instead.")]
161
+ Lemma primitive_root_eq0 (F : fieldType) n (w : F) :
162
+ n.-primitive_root w -> (w == 0) = (n == 0%N).
162
163
Proof .
163
- suff realK : {homo (@conjC C) : x / x \is Num.real}.
164
- by move=> x; apply/idP/idP => /realK//; rewrite conjCK.
165
- by move=> x xreal; rewrite conj_Creal.
164
+ move=> wp; apply/eqP/idP => [w0|/eqP p0]; move: wp; rewrite ?w0 ?p0; last first.
165
+ by move=> /prim_order_gt0//.
166
+ move=> /prim_expr_order/esym/eqP.
167
+ by rewrite expr0n; case: (n =P 0%N); rewrite ?oner_eq0.
166
168
Qed .
167
- End ssrnum.
168
169
169
170
(********* *)
170
- (* ssrint *)
171
+ (* intdiv *)
171
172
(********* *)
172
173
173
- Lemma dvdz_charf (R : ringType) (p : nat) :
174
- p \in [char R] -> forall n : int, (p %| n)%Z = (n%:~R == 0 :> R).
174
+ Lemma eisenstein (p : nat) (q : {poly int}) : prime p -> (size q != 1)%N ->
175
+ (~~ (p %| lead_coef q))%Z -> (~~ ((p : int) ^+ 2 %| q`_0))%Z ->
176
+ (forall i, (i < (size q).-1)%N -> p %| q`_i)%Z ->
177
+ irreducible_poly (map_poly (intr : int -> rat) q).
175
178
Proof .
176
- move=> charRp [] n; rewrite [LHS](dvdn_charf charRp)//.
177
- by rewrite NegzE abszN rmorphN// oppr_eq0.
179
+ move=> p_prime qN1 Ndvd_pql Ndvd_pq0 dvd_pq.
180
+ have qN0 : q != 0 by rewrite -lead_coef_eq0; apply: contraNneq Ndvd_pql => ->.
181
+ split.
182
+ rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0//.
183
+ by rewrite ltn_neqAle eq_sym qN1 size_poly_gt0.
184
+ move=> f' +/dvdpP_rat_int[f [d dN0 feq]]; rewrite {f'}feq size_scale// => fN1.
185
+ move=> /= [g q_eq]; rewrite q_eq (eqp_trans (eqp_scale _ _))//.
186
+ have fN0 : f != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mul0r.
187
+ have gN0 : g != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mulr0.
188
+ rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0// in fN1.
189
+ have [/eqP/size_poly1P[c cN0 ->]|gN1] := eqVneq (size g) 1%N.
190
+ by rewrite mulrC mul_polyC map_polyZ/= eqp_sym eqp_scale// intr_eq0.
191
+ have c_neq0 : (lead_coef q)%:~R != 0 :> 'F_p
192
+ by rewrite -(dvdz_charf (char_Fp _)).
193
+ have : map_poly (intr : int -> 'F_p) q = (lead_coef q)%:~R *: 'X^(size q).-1.
194
+ apply/val_inj/(@eq_from_nth _ 0) => [|i]; rewrite size_map_poly_id0//.
195
+ by rewrite size_scale// size_polyXn -polySpred.
196
+ move=> i_small; rewrite coef_poly i_small coefZ coefXn lead_coefE.
197
+ move: i_small; rewrite polySpred// ltnS/=.
198
+ case: ltngtP => // [i_lt|->]; rewrite (mulr1, mulr0)//= => _.
199
+ by apply/eqP; rewrite -(dvdz_charf (char_Fp _))// dvd_pq.
200
+ rewrite [in LHS]q_eq rmorphM/=.
201
+ set c := (X in X *: _); set n := (_.-1).
202
+ set pf := map_poly _ f; set pg := map_poly _ g => pfMpg.
203
+ have dvdXn (r : {poly _}) : size r != 1%N -> r %| c *: 'X^n -> r`_0 = 0.
204
+ move=> rN1; rewrite (eqp_dvdr _ (eqp_scale _ _))//.
205
+ rewrite -['X]subr0; move=> /dvdp_exp_XsubC[k lekn]; rewrite subr0.
206
+ move=> /eqpP[u /andP[u1N0 u2N0]]; have [->|k_gt0] := posnP k.
207
+ move=> /(congr1 (size \o val))/eqP.
208
+ by rewrite /= !size_scale// size_polyXn (negPf rN1).
209
+ move=> /(congr1 (fun p : {poly _} => p`_0))/eqP.
210
+ by rewrite !coefZ coefXn ltn_eqF// mulr0 mulf_eq0 (negPf u1N0) => /eqP.
211
+ suff : ((p : int) ^+ 2 %| q`_0)%Z by rewrite (negPf Ndvd_pq0).
212
+ have := c_neq0; rewrite q_eq coefM big_ord1.
213
+ rewrite lead_coefM rmorphM mulf_eq0 negb_or => /andP[lpfN0 qfN0].
214
+ have pfN1 : size pf != 1%N by rewrite size_map_poly_id0.
215
+ have pgN1 : size pg != 1%N by rewrite size_map_poly_id0.
216
+ have /(dvdXn _ pgN1) /eqP : pg %| c *: 'X^n by rewrite -pfMpg dvdp_mull.
217
+ have /(dvdXn _ pfN1) /eqP : pf %| c *: 'X^n by rewrite -pfMpg dvdp_mulr.
218
+ by rewrite !coef_map// -!(dvdz_charf (char_Fp _))//; apply: dvdz_mul.
178
219
Qed .
179
220
180
- (******* *)
181
- (* poly *)
182
- (******* *)
183
-
184
- Local Notation "p ^^ f" := (map_poly f p)
185
- (at level 30, f at level 30, format "p ^^ f").
186
-
221
+ (********** *)
222
+ (* polydiv *)
223
+ (********** *)
187
224
Lemma irredp_XaddC (F : fieldType) (x : F) : irreducible_poly ('X + x%:P).
188
225
Proof . by rewrite -[x]opprK rmorphN; apply: irredp_XsubC. Qed .
189
226
190
- Lemma lead_coef_XnsubC {R : ringType} n (c : R) : (0 < n)%N ->
191
- lead_coef ('X^n - c%:P) = 1.
192
- Proof .
193
- move=> gt0_n; rewrite lead_coefDl ?lead_coefXn //.
194
- by rewrite size_opp size_polyC size_polyXn ltnS (leq_trans (leq_b1 _)).
195
- Qed .
196
-
197
- Lemma lead_coef_XsubC {R : ringType} (c : R) :
198
- lead_coef ('X - c%:P) = 1.
199
- Proof . by apply: (@lead_coef_XnsubC _ 1%N). Qed .
200
-
201
- Lemma monic_XsubC {R : ringType} (c : R) : 'X - c%:P \is monic.
202
- Proof . by rewrite monicE lead_coef_XsubC. Qed .
203
-
204
- Lemma monic_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> 'X^n - c%:P \is monic.
205
- Proof . by move=> gt0_n; rewrite monicE lead_coef_XnsubC. Qed .
206
-
207
- Lemma size_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> size ('X^n - c%:P) = n.+1.
208
- Proof .
209
- move=> gt0_n; rewrite size_addl ?size_polyXn //.
210
- by rewrite size_opp size_polyC; case: (c =P 0).
211
- Qed .
212
-
213
- Lemma map_polyXsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) x :
214
- map_poly f ('X - x%:P) = 'X - (f x)%:P.
215
- Proof . by rewrite rmorphB/= map_polyX map_polyC. Qed .
216
-
217
- Lemma poly_XsubC_over {R : ringType} c (S : {pred R}) (addS : subringPred S)
218
- (kS : keyed_pred addS): c \in kS -> 'X - c%:P \is a polyOver kS.
219
- Proof . by move=> cS; rewrite rpredB ?polyOverC ?polyOverX. Qed .
220
-
221
- Lemma poly_XnsubC_over {R : ringType} n c (S : {pred R}) (addS : subringPred S)
222
- (kS : keyed_pred addS): c \in kS -> 'X^n - c%:P \is a polyOver kS.
223
- Proof . by move=> cS; rewrite rpredB ?rpredX ?polyOverX ?polyOverC. Qed .
224
-
225
- Lemma lead_coef_prod {R : idomainType} (ps : seq {poly R}) :
226
- lead_coef (\prod_(p <- ps) p) = \prod_(p <- ps) lead_coef p.
227
- Proof . by apply/big_morph/lead_coef1; apply: lead_coefM. Qed .
228
-
229
- Lemma lead_coef_prod_XsubC {R : idomainType} (cs : seq R) :
230
- lead_coef (\prod_(c <- cs) ('X - c%:P)) = 1.
231
- Proof .
232
- rewrite -(big_map (fun c : R => 'X - c%:P) xpredT idfun) /=.
233
- rewrite lead_coef_prod big_seq (eq_bigr (fun=> 1)) ?big1 //=.
234
- by move=> i /mapP[c _ ->]; apply: lead_coef_XsubC.
235
- Qed .
236
-
237
- Lemma coef0M {R : ringType} (p q : {poly R}) : (p * q)`_0 = p`_0 * q`_0.
238
- Proof . by rewrite coefM big_ord1. Qed .
239
-
240
- Lemma coef0_prod {R : ringType} {T : Type } (ps : seq T) (F : T -> {poly R}) P :
241
- (\prod_(p <- ps | P p) F p)`_0 = \prod_(p <- ps | P p) (F p)`_0.
242
- Proof .
243
- by apply: (big_morph (fun p : {poly R} => p`_0));
244
- [apply: coef0M | rewrite coefC eqxx].
245
- Qed .
246
-
247
- Lemma map_prod_XsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) rs :
248
- map_poly f (\prod_(x <- rs) ('X - x%:P)) =
249
- \prod_(x <- map f rs) ('X - x%:P).
250
- Proof .
251
- by rewrite rmorph_prod big_map; apply/eq_bigr => x /=; rewrite map_polyXsubC.
252
- Qed .
227
+ Lemma eqpW (R : idomainType) (p q : {poly R}) : p = q -> p %= q.
228
+ Proof . by move->; rewrite eqpxx. Qed .
253
229
254
- Lemma eq_in_map_poly_id0 (aR rR : ringType) (f g : aR -> rR)
255
- (S0 : {pred aR}) (addS : addrPred S0) (kS : keyed_pred addS) :
256
- f 0 = 0 -> g 0 = 0 ->
257
- {in kS, f =1 g} -> {in polyOver kS, map_poly f =1 map_poly g}.
230
+ Lemma horner_mod (R : fieldType) (p q : {poly R}) x : root q x ->
231
+ (p %% q).[x] = p.[x].
258
232
Proof .
259
- move=> f0 g0 eq_fg p pP; apply/polyP => i.
260
- by rewrite !coef_map_id0// eq_fg// (polyOverP _).
233
+ by move=> /eqP qx0; rewrite [p in RHS](divp_eq p q) !hornerE qx0 mulr0 add0r.
261
234
Qed .
262
235
263
- Lemma eq_in_map_poly (aR rR : ringType) (f g : {additive aR -> rR})
264
- (S0 : {pred aR}) (addS : addrPred S0) (kS : keyed_pred addS) :
265
- {in kS, f =1 g} -> {in polyOver kS, map_poly f =1 map_poly g}.
266
- Proof . by move=> /eq_in_map_poly_id0; apply; rewrite //?raddf0. Qed .
267
-
268
- Lemma mapf_root (F : fieldType) (R : ringType) (f : {rmorphism F -> R})
269
- (p : {poly F}) (x : F) :
270
- root (p ^^ f) (f x) = root p x.
271
- Proof . by rewrite !rootE horner_map fmorph_eq0. Qed .
236
+ Lemma root_dvdp (F : idomainType) (p q : {poly F}) (x : F) :
237
+ root p x -> p %| q -> root q x.
238
+ Proof . rewrite -!dvdp_XsubCl; exact: dvdp_trans. Qed .
272
239
273
240
Section multiplicity.
274
241
Variable (L : fieldType).
@@ -351,15 +318,6 @@ Qed.
351
318
352
319
End multiplicity.
353
320
354
- Lemma primitive_root_eq0 (F : fieldType) n (w : F) :
355
- n.-primitive_root w -> (w == 0) = (n == 0%N).
356
- Proof .
357
- move=> wp; apply/eqP/idP => [w0|/eqP p0]; move: wp; rewrite ?w0 ?p0; last first.
358
- by move=> /prim_order_gt0//.
359
- move=> /prim_expr_order/esym/eqP.
360
- by rewrite expr0n; case: (n =P 0%N); rewrite ?oner_eq0.
361
- Qed .
362
-
363
321
Lemma dvdp_exp_XsubC (R : idomainType) (p : {poly R}) (c : R) n :
364
322
reflect (exists2 k, (k <= n)%N & p %= ('X - c%:P) ^+ k)
365
323
(p %| ('X - c%:P) ^+ n).
@@ -380,70 +338,6 @@ move: rNc; rewrite -coprimep_XsubC => /(coprimep_expr n) /coprimepP.
380
338
by move=> /(_ _ (dvdpp _)); rewrite -size_poly_eq1 => /(_ _)/eqP.
381
339
Qed .
382
340
383
- Lemma eisenstein (p : nat) (q : {poly int}) : prime p -> (size q != 1)%N ->
384
- (~~ (p %| lead_coef q))%Z -> (~~ ((p : int) ^+ 2 %| q`_0))%Z ->
385
- (forall i, (i < (size q).-1)%N -> p %| q`_i)%Z ->
386
- irreducible_poly (map_poly (intr : int -> rat) q).
387
- Proof .
388
- move=> p_prime qN1 Ndvd_pql Ndvd_pq0 dvd_pq.
389
- have qN0 : q != 0 by rewrite -lead_coef_eq0; apply: contraNneq Ndvd_pql => ->.
390
- split.
391
- rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0//.
392
- by rewrite ltn_neqAle eq_sym qN1 size_poly_gt0.
393
- move=> f' +/dvdpP_rat_int[f [d dN0 feq]]; rewrite {f'}feq size_scale// => fN1.
394
- move=> /= [g q_eq]; rewrite q_eq (eqp_trans (eqp_scale _ _))//.
395
- have fN0 : f != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mul0r.
396
- have gN0 : g != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mulr0.
397
- rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0// in fN1.
398
- have [/eqP/size_poly1P[c cN0 ->]|gN1] := eqVneq (size g) 1%N.
399
- by rewrite mulrC mul_polyC map_polyZ/= eqp_sym eqp_scale// intr_eq0.
400
- have c_neq0 : (lead_coef q)%:~R != 0 :> 'F_p
401
- by rewrite -(dvdz_charf (char_Fp _)).
402
- have : map_poly (intr : int -> 'F_p) q = (lead_coef q)%:~R *: 'X^(size q).-1.
403
- apply/val_inj/(@eq_from_nth _ 0) => [|i]; rewrite size_map_poly_id0//.
404
- by rewrite size_scale// size_polyXn -polySpred.
405
- move=> i_small; rewrite coef_poly i_small coefZ coefXn lead_coefE.
406
- move: i_small; rewrite polySpred// ltnS/=.
407
- case: ltngtP => // [i_lt|->]; rewrite (mulr1, mulr0)//= => _.
408
- by apply/eqP; rewrite -(dvdz_charf (char_Fp _))// dvd_pq.
409
- rewrite [in LHS]q_eq rmorphM/=.
410
- set c := (X in X *: _); set n := (_.-1).
411
- set pf := map_poly _ f; set pg := map_poly _ g => pfMpg.
412
- have dvdXn (r : {poly _}) : size r != 1%N -> r %| c *: 'X^n -> r`_0 = 0.
413
- move=> rN1; rewrite (eqp_dvdr _ (eqp_scale _ _))//.
414
- rewrite -['X]subr0; move=> /dvdp_exp_XsubC[k lekn]; rewrite subr0.
415
- move=> /eqpP[u /andP[u1N0 u2N0]]; have [->|k_gt0] := posnP k.
416
- move=> /(congr1 (size \o val))/eqP.
417
- by rewrite /= !size_scale// size_polyXn (negPf rN1).
418
- move=> /(congr1 (fun p : {poly _} => p`_0))/eqP.
419
- by rewrite !coefZ coefXn ltn_eqF// mulr0 mulf_eq0 (negPf u1N0) => /eqP.
420
- suff : ((p : int) ^+ 2 %| q`_0)%Z by rewrite (negPf Ndvd_pq0).
421
- have := c_neq0; rewrite q_eq coefM big_ord1.
422
- rewrite lead_coefM rmorphM mulf_eq0 negb_or => /andP[lpfN0 qfN0].
423
- have pfN1 : size pf != 1%N by rewrite size_map_poly_id0.
424
- have pgN1 : size pg != 1%N by rewrite size_map_poly_id0.
425
- have /(dvdXn _ pgN1) /eqP : pg %| c *: 'X^n by rewrite -pfMpg dvdp_mull.
426
- have /(dvdXn _ pfN1) /eqP : pf %| c *: 'X^n by rewrite -pfMpg dvdp_mulr.
427
- by rewrite !coef_map// -!(dvdz_charf (char_Fp _))//; apply: dvdz_mul.
428
- Qed .
429
-
430
- (********** *)
431
- (* polydiv *)
432
- (********** *)
433
-
434
- Lemma eqpW (R : idomainType) (p q : {poly R}) : p = q -> p %= q.
435
- Proof . by move->; rewrite eqpxx. Qed .
436
-
437
- Lemma horner_mod (R : fieldType) (p q : {poly R}) x : root q x ->
438
- (p %% q).[x] = p.[x].
439
- Proof .
440
- by move=> /eqP qx0; rewrite [p in RHS](divp_eq p q) !hornerE qx0 mulr0 add0r.
441
- Qed .
442
-
443
- Lemma root_dvdp (F : idomainType) (p q : {poly F}) (x : F) :
444
- root p x -> p %| q -> root q x.
445
- Proof . rewrite -!dvdp_XsubCl; exact: dvdp_trans. Qed .
446
-
447
341
(********* *)
448
342
(* vector *)
449
343
(********* *)
0 commit comments