@@ -6,29 +6,33 @@ EduTelligence is a comprehensive suite of AI-powered microservices designed to e
6
6
7
7
EduTelligence maintains compatibility with different versions of [ Artemis] ( https://github.com/ls1intum/Artemis ) . The following table shows the compatibility matrix:
8
8
9
- | Artemis Version | EduTelligence Version | Status |
10
- | ----------------- | ---------------------- | ---------|
11
- | 8.0.x | 1.0.x | ✅ Stable |
12
- | 8.1.x | 1.1.x | ✅ Stable |
9
+ | Artemis Version | EduTelligence Version | Status |
10
+ | --------------- | --------------------- | --------- |
11
+ | 8.0.x | 1.0.x | ✅ Stable |
12
+ | 8.1.x | 1.1.x | ✅ Stable |
13
13
14
14
> ** Note:** Always ensure you're using compatible versions for optimal integration and functionality.
15
15
16
16
## 🚀 Sub-Services Overview
17
17
18
18
### 🤖 [ Iris] ( ./iris/ ) - AI Virtual Tutor
19
+
19
20
** Pyris** - An intermediary system that connects Artemis with various Large Language Models (LLMs) to power Iris, a virtual AI tutor.
20
21
21
22
** Key Features:**
23
+
22
24
- ** Exercise Support** : Provides intelligent feedback on programming exercises
23
25
- ** Course Content Support** : Uses RAG (Retrieval-Augmented Generation) for detailed course content explanations
24
26
- ** Competency Generation** : Automates the creation of course competencies
25
27
26
28
** Technology Stack:** Python 3.12, Poetry, FastAPI, Weaviate (Vector DB)
27
29
28
30
### ⚡ [ Hyperion] ( ./hyperion/ ) - AI Exercise Creation Assistant
31
+
29
32
AI-driven programming exercise creation assistance that illuminates the process of creating engaging, effective programming exercises.
30
33
31
34
** Key Features:**
35
+
32
36
- ** Problem Statement Refinement** : AI-powered improvement of exercise descriptions
33
37
- ** Code Stub Generation** : Automatic generation of starter code templates
34
38
- ** Context-Aware Suggestions** : Intelligent recommendations for exercise improvement
@@ -37,9 +41,11 @@ AI-driven programming exercise creation assistance that illuminates the process
37
41
** Technology Stack:** Python 3.13, Poetry, gRPC, Docker
38
42
39
43
### 🏛️ [ Athena] ( ./athena/ ) - Automated Assessment System
44
+
40
45
A sophisticated system designed to provide (semi-)automated assessments for various types of academic exercises.
41
46
42
47
** Key Features:**
48
+
43
49
- ** Multi-Exercise Support** : Text exercises, programming exercises, and planned UML/math support
44
50
- ** LMS Integration** : Efficient evaluation for large courses
45
51
- ** Advanced Assessment** : AI-powered grading and feedback generation
@@ -49,9 +55,11 @@ A sophisticated system designed to provide (semi-)automated assessments for vari
49
55
** Documentation:** [ ls1intum.github.io/Athena/] ( https://ls1intum.github.io/Athena )
50
56
51
57
### 🗺️ [ Atlas] ( ./atlas/ ) - Adaptive Competency-Based Learning
58
+
52
59
A microservice that incorporates competency models into Learning Management Systems using machine learning and generative AI.
53
60
54
61
** Key Features:**
62
+
55
63
- ** AI-Powered Competency Models** : Automatic generation of sophisticated competency frameworks
56
64
- ** Relationship Mapping** : Automated relationships between competencies
57
65
- ** Learning Activity Recommendations** : AI-driven suggestions for linking competencies to activities
@@ -60,9 +68,11 @@ A microservice that incorporates competency models into Learning Management Syst
60
68
** Technology Stack:** Python, Machine Learning, GenAI/LLMs
61
69
62
70
### 📊 [ Logos] ( ./logos/ ) - LLM Engineering Platform
71
+
63
72
A comprehensive LLM Engineering Platform that provides centralized management and monitoring for AI services.
64
73
65
74
** Key Features:**
75
+
66
76
- ** Usage Logging** : Comprehensive tracking of LLM usage
67
77
- ** Billing Management** : Cost tracking and billing for AI services
68
78
- ** Central Resource Management** : Unified management of AI resources
@@ -72,13 +82,15 @@ A comprehensive LLM Engineering Platform that provides centralized management an
72
82
** Technology Stack:** Python 3.13, Poetry, FastAPI, Docker
73
83
74
84
### 🌌 [ Nebula] ( ./nebula/ ) - [ In Development]
75
- * Documentation and features coming soon*
85
+
86
+ _ Documentation and features coming soon_
76
87
77
88
** Technology Stack:** Python, Poetry
78
89
79
90
## 🚀 Quick Start
80
91
81
92
### Prerequisites
93
+
82
94
- ** Python 3.12+** (3.13 recommended for newer services)
83
95
- ** Poetry** for dependency management
84
96
- ** Docker & Docker Compose** for containerization
@@ -87,6 +99,7 @@ A comprehensive LLM Engineering Platform that provides centralized management an
87
99
### Installation
88
100
89
101
1 . ** Clone the repository:**
102
+
90
103
``` bash
91
104
git clone https://github.com/ls1intum/edutelligence.git
92
105
cd edutelligence
@@ -128,4 +141,86 @@ This project is licensed under the **MIT License** - see the [LICENSE](LICENSE)
128
141
129
142
- ** Issues** : [ GitHub Issues] ( https://github.com/ls1intum/edutelligence/issues )
130
143
- ** Discussions** : [ GitHub Discussions] ( https://github.com/ls1intum/edutelligence/discussions )
131
- - ** Documentation** : Individual service READMEs and documentation
144
+ - ** Documentation** : Individual service READMEs and documentation
145
+
146
+ # API Endpoints Finalization and Code Quality Improvements
147
+
148
+ ## What?
149
+
150
+ - Finalized API endpoints for integration
151
+ - Introduced code quality tools (Black and Ruff)
152
+
153
+ ## Why?
154
+
155
+ - To establish a consistent and well-defined API structure
156
+ - To improve code quality and maintainability through automated linting
157
+
158
+ ## How?
159
+
160
+ - Defined and documented all necessary endpoints
161
+ - Integrated Black for code formatting
162
+ - Added Ruff for Python linting
163
+
164
+ ## Affected Issues & Feature Proposal
165
+
166
+ Closes #[ issue_number]
167
+
168
+ ## Checklist
169
+
170
+ ### General
171
+
172
+ - [x] Chose a title conforming to the naming conventions for pull requests
173
+ - [x] Updated API documentation
174
+ - [x] Added linting configuration files
175
+
176
+ ### Testing
177
+
178
+ - [x] Verified all endpoints are working as expected
179
+ - [x] Ensured linting rules are properly applied
180
+
181
+ ### Testing Instructions
182
+
183
+ 1 . Run Black to format code:
184
+ ``` bash
185
+ black .
186
+ ```
187
+ 2 . Run Ruff to check code quality:
188
+ ``` bash
189
+ ruff check .
190
+ ```
191
+
192
+ ## Review Progress
193
+
194
+ - [ ] Code Review 1
195
+ - [ ] Code Review 2
196
+
197
+ ## Summary of Changes
198
+
199
+ ### New Features
200
+
201
+ - Defined and documented all API endpoints for integration
202
+ - Added comprehensive API documentation
203
+
204
+ ### Improvements
205
+
206
+ - Introduced Black for consistent code formatting
207
+ - Added Ruff for enhanced Python linting
208
+ - Improved code quality through automated checks
209
+
210
+ ### Configuration
211
+
212
+ - Added ` .black ` configuration file
213
+ - Added ` ruff.toml ` configuration file
214
+ - Updated development dependencies
215
+
216
+ ### Documentation
217
+
218
+ - Updated API documentation with endpoint specifications
219
+ - Added linting setup instructions
220
+ - Included code style guidelines
221
+
222
+ ## Next Steps
223
+
224
+ - Monitor linting results in CI/CD pipeline
225
+ - Gather feedback on API endpoint structure
226
+ - Consider additional code quality tools if needed
0 commit comments