-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
69 lines (51 loc) · 2.04 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import torch.nn as nn
import torchvision.models as models
class CNNRNN(nn.Module):
def __init__(self, embed_size, hidden_size, n_class, num_layers=1):
super(CNNRNN, self).__init__()
resnet = models.resnet50()
for param in resnet.parameters():
param.requires_grad_(True)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
# rnn
self.embedding_layer = nn.Embedding(n_class, embed_size)
self.lstm = nn.LSTM(input_size=embed_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, n_class)
def forward(self, images, batch_y):
# print(images.size())
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
embed = self.embedding_layer(batch_y)
embed = torch.cat((features.unsqueeze(1), embed), dim=1)
lstm_outputs, _ = self.lstm(embed)
out = self.linear(lstm_outputs[:, 0, :])
return out
#
# class RNN(nn.Module):
# def __init__(self, embed_size, hidden_size, n_class, num_layers=1):
# super().__init__()
# self.embedding_layer = nn.Embedding(n_class, embed_size)
#
# self.lstm = nn.LSTM(input_size=embed_size, hidden_size=hidden_size,
# num_layers=num_layers, batch_first=True)
#
# self.linear = nn.Linear(hidden_size, n_class)
#
# def forward(self, features, captions):
# captions = captions[:, :-1]
# embed = self.embedding_layer(captions)
# embed = torch.cat((features.unsqueeze(1), embed), dim=1)
# lstm_outputs, _ = self.lstm(embed)
# out = self.linear(lstm_outputs)
#
# return out
#
#
# criterion = nn.CrossEntropyLoss()
#
# optimzier = torch.optim.Adadelta(net.parameters(), 1e-1)