We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Steps to Reproduce:
from langchain.chat_models import init_chat_model from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers.string import StrOutputParser llm = init_chat_model(model="gemini-1.5-flash") llm.invoke('...')
Expected Behavior:
Return an AIMessage
Actual Behavior (Error):
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[19], line 1 ----> 1 llm.invoke('...') File /venv/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py:307, in BaseChatModel.invoke(self, input, config, stop, **kwargs) 296 def invoke( 297 self, 298 input: LanguageModelInput, (...) 302 **kwargs: Any, 303 ) -> BaseMessage: 304 config = ensure_config(config) 305 return cast( 306 ChatGeneration, --> 307 self.generate_prompt( 308 [self._convert_input(input)], 309 stop=stop, 310 callbacks=config.get("callbacks"), 311 tags=config.get("tags"), 312 metadata=config.get("metadata"), 313 run_name=config.get("run_name"), 314 run_id=config.pop("run_id", None), 315 **kwargs, 316 ).generations[0][0], 317 ).message File /venv/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py:843, in BaseChatModel.generate_prompt(self, prompts, stop, callbacks, **kwargs) 835 def generate_prompt( 836 self, 837 prompts: list[PromptValue], (...) 840 **kwargs: Any, 841 ) -> LLMResult: 842 prompt_messages = [p.to_messages() for p in prompts] --> 843 return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs) File /venv/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py:683, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs) 680 for i, m in enumerate(messages): 681 try: 682 results.append( --> 683 self._generate_with_cache( 684 m, 685 stop=stop, 686 run_manager=run_managers[i] if run_managers else None, 687 **kwargs, 688 ) 689 ) 690 except BaseException as e: 691 if run_managers: File /venv/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py:908, in BaseChatModel._generate_with_cache(self, messages, stop, run_manager, **kwargs) 906 else: 907 if inspect.signature(self._generate).parameters.get("run_manager"): --> 908 result = self._generate( 909 messages, stop=stop, run_manager=run_manager, **kwargs 910 ) 911 else: 912 result = self._generate(messages, stop=stop, **kwargs) File /venv/lib/python3.12/site-packages/langchain_google_vertexai/chat_models.py:1286, in ChatVertexAI._generate(self, messages, stop, run_manager, stream, **kwargs) 1284 if not self._is_gemini_model: 1285 return self._generate_non_gemini(messages, stop=stop, **kwargs) -> 1286 return self._generate_gemini( 1287 messages=messages, 1288 stop=stop, 1289 run_manager=run_manager, 1290 is_gemini=True, 1291 **kwargs, 1292 ) File /venv/lib/python3.12/site-packages/langchain_google_vertexai/chat_models.py:1521, in ChatVertexAI._generate_gemini(self, messages, stop, run_manager, **kwargs) 1514 def _generate_gemini( 1515 self, 1516 messages: List[BaseMessage], (...) 1519 **kwargs: Any, 1520 ) -> ChatResult: -> 1521 request = self._prepare_request_gemini(messages=messages, stop=stop, **kwargs) 1522 response = _completion_with_retry( 1523 self.prediction_client.generate_content, 1524 max_retries=self.max_retries, (...) 1527 **kwargs, 1528 ) 1529 return self._gemini_response_to_chat_result(response) File /venv/lib/python3.12/site-packages/langchain_google_vertexai/chat_models.py:1376, in ChatVertexAI._prepare_request_gemini(self, messages, stop, stream, tools, functions, tool_config, safety_settings, cached_content, tool_choice, logprobs, **kwargs) 1361 def _prepare_request_gemini( 1362 self, 1363 messages: List[BaseMessage], (...) 1374 **kwargs, 1375 ) -> Union[v1GenerateContentRequest, GenerateContentRequest]: -> 1376 system_instruction, contents = _parse_chat_history_gemini( 1377 messages, 1378 self._image_bytes_loader_client, 1379 perform_literal_eval_on_string_raw_content=self.perform_literal_eval_on_string_raw_content, 1380 ) 1381 formatted_tools = self._tools_gemini(tools=tools, functions=functions) 1382 if tool_config: File /venv/lib/python3.12/site-packages/langchain_google_vertexai/chat_models.py:319, in _parse_chat_history_gemini(history, imageBytesLoader, convert_system_message_to_human, perform_literal_eval_on_string_raw_content) 317 prev_ai_message = None 318 role = "user" --> 319 parts = _convert_to_parts(message) 320 if system_parts is not None: 321 parts = system_parts + parts File /venv/lib/python3.12/site-packages/langchain_google_vertexai/chat_models.py:286, in _parse_chat_history_gemini.<locals>._convert_to_parts(message) 284 raw_content = [raw_content] 285 result = [] --> 286 for raw_part in raw_content: 287 part = _convert_to_prompt(raw_part) 288 if part: TypeError: 'ellipsis' object is not iterable
Environment:
The text was updated successfully, but these errors were encountered:
could you provide your prompt that reproduces the error, please?
Sorry, something went wrong.
"..." as it's specified in example
No branches or pull requests
Steps to Reproduce:
Expected Behavior:
Return an AIMessage
Actual Behavior (Error):
Environment:
The text was updated successfully, but these errors were encountered: