|
| 1 | +/* |
| 2 | +Copyright 2023 The Kubernetes Authors. |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +*/ |
| 16 | + |
| 17 | +package set |
| 18 | + |
| 19 | +import ( |
| 20 | + "sort" |
| 21 | +) |
| 22 | + |
| 23 | +// Empty is public since it is used by some internal API objects for conversions between external |
| 24 | +// string arrays and internal sets, and conversion logic requires public types today. |
| 25 | +type Empty struct{} |
| 26 | + |
| 27 | +// Set is a set of the same type elements, implemented via map[ordered]struct{} for minimal memory consumption. |
| 28 | +type Set[E ordered] map[E]Empty |
| 29 | + |
| 30 | +// New creates a new set. |
| 31 | +func New[E ordered](items ...E) Set[E] { |
| 32 | + ss := Set[E]{} |
| 33 | + ss.Insert(items...) |
| 34 | + return ss |
| 35 | +} |
| 36 | + |
| 37 | +// KeySet creates a Set[E] from a keys of a map[E](? extends interface{}). |
| 38 | +func KeySet[E ordered, A any](theMap map[E]A) Set[E] { |
| 39 | + ret := Set[E]{} |
| 40 | + for key := range theMap { |
| 41 | + ret.Insert(key) |
| 42 | + } |
| 43 | + return ret |
| 44 | +} |
| 45 | + |
| 46 | +// Insert adds items to the set. |
| 47 | +func (s Set[E]) Insert(items ...E) Set[E] { |
| 48 | + for _, item := range items { |
| 49 | + s[item] = Empty{} |
| 50 | + } |
| 51 | + return s |
| 52 | +} |
| 53 | + |
| 54 | +// Delete removes all items from the set. |
| 55 | +func (s Set[E]) Delete(items ...E) Set[E] { |
| 56 | + for _, item := range items { |
| 57 | + delete(s, item) |
| 58 | + } |
| 59 | + return s |
| 60 | +} |
| 61 | + |
| 62 | +// Has returns true if and only if item is contained in the set. |
| 63 | +func (s Set[E]) Has(item E) bool { |
| 64 | + _, contained := s[item] |
| 65 | + return contained |
| 66 | +} |
| 67 | + |
| 68 | +// HasAll returns true if and only if all items are contained in the set. |
| 69 | +func (s Set[E]) HasAll(items ...E) bool { |
| 70 | + for _, item := range items { |
| 71 | + if !s.Has(item) { |
| 72 | + return false |
| 73 | + } |
| 74 | + } |
| 75 | + return true |
| 76 | +} |
| 77 | + |
| 78 | +// HasAny returns true if any items are contained in the set. |
| 79 | +func (s Set[E]) HasAny(items ...E) bool { |
| 80 | + for _, item := range items { |
| 81 | + if s.Has(item) { |
| 82 | + return true |
| 83 | + } |
| 84 | + } |
| 85 | + return false |
| 86 | +} |
| 87 | + |
| 88 | +// Union returns a new set which includes items in either s1 or s2. |
| 89 | +// For example: |
| 90 | +// s1 = {a1, a2} |
| 91 | +// s2 = {a3, a4} |
| 92 | +// s1.Union(s2) = {a1, a2, a3, a4} |
| 93 | +// s2.Union(s1) = {a1, a2, a3, a4} |
| 94 | +func (s Set[E]) Union(s2 Set[E]) Set[E] { |
| 95 | + result := Set[E]{} |
| 96 | + result.Insert(s.UnsortedList()...) |
| 97 | + result.Insert(s2.UnsortedList()...) |
| 98 | + return result |
| 99 | +} |
| 100 | + |
| 101 | +// Len returns the number of elements in the set. |
| 102 | +func (s Set[E]) Len() int { |
| 103 | + return len(s) |
| 104 | +} |
| 105 | + |
| 106 | +// Intersection returns a new set which includes the item in BOTH s1 and s2 |
| 107 | +// For example: |
| 108 | +// s1 = {a1, a2} |
| 109 | +// s2 = {a2, a3} |
| 110 | +// s1.Intersection(s2) = {a2} |
| 111 | +func (s Set[E]) Intersection(s2 Set[E]) Set[E] { |
| 112 | + var walk, other Set[E] |
| 113 | + result := Set[E]{} |
| 114 | + if s.Len() < s2.Len() { |
| 115 | + walk = s |
| 116 | + other = s2 |
| 117 | + } else { |
| 118 | + walk = s2 |
| 119 | + other = s |
| 120 | + } |
| 121 | + for key := range walk { |
| 122 | + if other.Has(key) { |
| 123 | + result.Insert(key) |
| 124 | + } |
| 125 | + } |
| 126 | + return result |
| 127 | +} |
| 128 | + |
| 129 | +// IsSuperset returns true if and only if s1 is a superset of s2. |
| 130 | +func (s Set[E]) IsSuperset(s2 Set[E]) bool { |
| 131 | + for item := range s2 { |
| 132 | + if !s.Has(item) { |
| 133 | + return false |
| 134 | + } |
| 135 | + } |
| 136 | + return true |
| 137 | +} |
| 138 | + |
| 139 | +// Difference returns a set of objects that are not in s2 |
| 140 | +// For example: |
| 141 | +// s1 = {a1, a2, a3} |
| 142 | +// s2 = {a1, a2, a4, a5} |
| 143 | +// s1.Difference(s2) = {a3} |
| 144 | +// s2.Difference(s1) = {a4, a5} |
| 145 | +func (s Set[E]) Difference(s2 Set[E]) Set[E] { |
| 146 | + result := Set[E]{} |
| 147 | + for key := range s { |
| 148 | + if !s2.Has(key) { |
| 149 | + result.Insert(key) |
| 150 | + } |
| 151 | + } |
| 152 | + return result |
| 153 | +} |
| 154 | + |
| 155 | +// Equal returns true if and only if s1 is equal (as a set) to s2. |
| 156 | +// Two sets are equal if their membership is identical. |
| 157 | +func (s Set[E]) Equal(s2 Set[E]) bool { |
| 158 | + return s.Len() == s.Len() && s.IsSuperset(s2) |
| 159 | +} |
| 160 | + |
| 161 | +type sortableSlice[E ordered] []E |
| 162 | + |
| 163 | +func (s sortableSlice[E]) Len() int { |
| 164 | + return len(s) |
| 165 | +} |
| 166 | +func (s sortableSlice[E]) Less(i, j int) bool { return s[i] < s[j] } |
| 167 | +func (s sortableSlice[E]) Swap(i, j int) { s[i], s[j] = s[j], s[i] } |
| 168 | + |
| 169 | +// SortedList returns the contents as a sorted slice. |
| 170 | +func (s Set[E]) SortedList() []E { |
| 171 | + res := make(sortableSlice[E], 0, s.Len()) |
| 172 | + for key := range s { |
| 173 | + res = append(res, key) |
| 174 | + } |
| 175 | + sort.Sort(res) |
| 176 | + return res |
| 177 | +} |
| 178 | + |
| 179 | +// UnsortedList returns the slice with contents in random order. |
| 180 | +func (s Set[E]) UnsortedList() []E { |
| 181 | + res := make([]E, 0, len(s)) |
| 182 | + for key := range s { |
| 183 | + res = append(res, key) |
| 184 | + } |
| 185 | + return res |
| 186 | +} |
| 187 | + |
| 188 | +// PopAny returns a single element from the set. |
| 189 | +func (s Set[E]) PopAny() (E, bool) { |
| 190 | + for key := range s { |
| 191 | + s.Delete(key) |
| 192 | + return key, true |
| 193 | + } |
| 194 | + var zeroValue E |
| 195 | + return zeroValue, false |
| 196 | +} |
| 197 | + |
| 198 | +// Clone returns a new set which is a copy of the current set. |
| 199 | +func (s Set[T]) Clone() Set[T] { |
| 200 | + result := make(Set[T], len(s)) |
| 201 | + for key := range s { |
| 202 | + result.Insert(key) |
| 203 | + } |
| 204 | + return result |
| 205 | +} |
| 206 | + |
| 207 | +// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection. |
| 208 | +// For example: |
| 209 | +// s1 = {a1, a2, a3} |
| 210 | +// s2 = {a1, a2, a4, a5} |
| 211 | +// s1.SymmetricDifference(s2) = {a3, a4, a5} |
| 212 | +// s2.SymmetricDifference(s1) = {a3, a4, a5} |
| 213 | +func (s Set[T]) SymmetricDifference(s2 Set[T]) Set[T] { |
| 214 | + return s.Difference(s2).Union(s2.Difference(s)) |
| 215 | +} |
| 216 | + |
| 217 | +// Clear empties the set. |
| 218 | +// It is preferable to replace the set with a newly constructed set, |
| 219 | +// but not all callers can do that (when there are other references to the map). |
| 220 | +// In some cases the set *won't* be fully cleared, e.g. a Set[float32] containing NaN |
| 221 | +// can't be cleared because NaN can't be removed. |
| 222 | +// For sets containing items of a type that is reflexive for ==, |
| 223 | +// this is optimized to a single call to runtime.mapclear(). |
| 224 | +func (s Set[T]) Clear() Set[T] { |
| 225 | + for key := range s { |
| 226 | + delete(s, key) |
| 227 | + } |
| 228 | + return s |
| 229 | +} |
0 commit comments