-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor.py
123 lines (94 loc) · 5.14 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
from typing import Dict, Optional
import pickle
import wandb
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from datasets.loader import get_train_dataloader, get_test_dataloader
from utils.misc import prepare_inputs
from utils.misc import mkdir
from config import get_norm_method
class Predictor:
def __init__(self, cfg, model, norm_module: Optional[torch.nn.Module] = None):
self.cfg = cfg
self.model = model
self.norm_method = get_norm_method(cfg)
self.norm_module = norm_module
cfg.TRAIN.SHUFFLE, cfg.TRAIN.DROP_LAST = False, False
self.train_loader = get_train_dataloader(cfg)
self.test_loader = get_test_dataloader(cfg)
self.test_errors, self.train_errors = self._get_test_errors(), self._get_train_errors()
@torch.no_grad()
def predict(self):
self.model.eval()
self.norm_module.requires_grad_(False).eval() if self.norm_module is not None else None
log_dict = {}
self.errors_all = {
"test_mse": self.test_errors['mse'],
"test_mae": self.test_errors['mae'],
"train_mse": self.train_errors['mse'],
"train_mae": self.train_errors['mae'],
}
results = self.get_results() # {test_mse: , test_mae:, train_mse: train_mae: }
self.save_results(results)
self.save_to_npy(**self.errors_all)
# log to W&B
log_dict.update({f"Test/{metric}": value for metric, value in results.items()})
if self.cfg.WANDB.ENABLE:
wandb.log(log_dict)
@torch.no_grad()
def _get_errors_from_dataloader(self, dataloader, tta=False, split='test') -> Dict[str, np.ndarray]:
self.model.eval()
self.norm_module.requires_grad_(False).eval() if self.norm_module is not None else None
mse_all = []
mae_all = []
for inputs in tqdm(dataloader, desc='Calculating Errors'):
enc_window_raw, enc_window_stamp, dec_window, dec_window_stamp = prepare_inputs(inputs)
if self.norm_method == 'SAN':
enc_window, statistics_pred = self.norm_module.normalize(enc_window_raw)
else: # Normalization from Non-stationary Transformer
means = enc_window_raw.mean(1, keepdim=True).detach()
enc_window = enc_window_raw - means
stdev = torch.sqrt(torch.var(enc_window, dim=1, keepdim=True, unbiased=False) + 1e-5)
enc_window /= stdev
ground_truth = dec_window[:, -self.cfg.DATA.PRED_LEN:, self.cfg.DATA.TARGET_START_IDX:].float()
dec_zeros = torch.zeros_like(dec_window[:, -self.cfg.DATA.PRED_LEN:, :]).float()
dec_window = torch.cat([dec_window[:, :self.cfg.DATA.LABEL_LEN:, :], dec_zeros], dim=1).float().cuda()
model_cfg = self.cfg.MODEL
pred = self.model(enc_window, enc_window_stamp, dec_window, dec_window_stamp)
if model_cfg.output_attention:
pred = pred[0]
pred = pred[:, -self.cfg.DATA.PRED_LEN:, self.cfg.DATA.TARGET_START_IDX:]
if self.norm_method == 'SAN':
pred = self.norm_module.de_normalize(pred, statistics_pred)
else: # De-Normalization from Non-stationary Transformer
pred = pred * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.cfg.DATA.PRED_LEN, 1))
pred = pred + (means[:, 0, :].unsqueeze(1).repeat(1, self.cfg.DATA.PRED_LEN, 1))
mse = F.mse_loss(pred, ground_truth, reduction='none').mean(dim=(-2, -1))
mae = F.l1_loss(pred, ground_truth, reduction='none').mean(dim=(-2, -1))
mse_all.append(mse)
mae_all.append(mae)
mse_all = torch.flatten(torch.concat(mse_all, dim=0)).cpu().numpy()
mae_all = torch.flatten(torch.concat(mae_all, dim=0)).cpu().numpy()
return {'mse': mse_all, 'mae': mae_all}
def _get_train_errors(self):
return self._get_errors_from_dataloader(self.train_loader, tta=False, split='train')
def _get_test_errors(self):
return self._get_errors_from_dataloader(self.test_loader, tta=self.cfg.TTA.ENABLE, split='test')
def get_results(self) -> Dict[str, float]:
test_mse = self.test_errors['mse'].mean().astype(float)
test_mae = self.test_errors['mae'].mean().astype(float)
train_mse = self.train_errors['mse'].mean().astype(float)
train_mae = self.train_errors['mae'].mean().astype(float)
return {"test_mse": test_mse, "test_mae": test_mae, "train_mse": train_mse, "train_mae": train_mae}
def save_results(self, results):
results_string = ", ".join([f"{metric}: {value:.04f}" for metric, value in results.items()])
print("Results without TSF-TTA:")
print(results_string)
with open(os.path.join(mkdir(self.cfg.RESULT_DIR) / "test.txt"), "w") as f:
f.write(results_string)
def save_to_npy(self, **kwargs):
for key, value in kwargs.items():
np.save(os.path.join(self.cfg.RESULT_DIR, f"{key}.npy"), value)