|
| 1 | +## EMODataset Class Summary |
| 2 | + |
| 3 | +### Overview |
| 4 | +The `EMODataset` class is a PyTorch dataset for processing and augmenting video frames, with functionalities to remove backgrounds, warp and crop faces, and save/load processed frames efficiently. The class is designed to handle large video datasets and includes methods to streamline the preprocessing pipeline. |
| 5 | + |
| 6 | +### Dependencies |
| 7 | +The class relies on the following libraries: |
| 8 | +- `moviepy.editor`: Video editing and processing. |
| 9 | +- `PIL.Image`: Image processing. |
| 10 | +- `torch`: PyTorch for tensor operations and model support. |
| 11 | +- `torchvision.transforms`: Image transformations. |
| 12 | +- `decord`: Efficient video reading. |
| 13 | +- `rembg`: Background removal. |
| 14 | +- `face_recognition`: Face detection. |
| 15 | +- `skimage.transform`: Image warping. |
| 16 | +- `cv2`: Video writing with OpenCV. |
| 17 | +- `numpy`: Array operations. |
| 18 | +- `io`, `os`, `json`, `Path`, `subprocess`, `tqdm`: Standard libraries for file handling, I/O operations, and progress visualization. |
| 19 | + |
| 20 | +### Initialization |
| 21 | +The `__init__` method sets up the dataset with various parameters: |
| 22 | +- `use_gpu`, `sample_rate`, `n_sample_frames`, `width`, `height`, `img_scale`, `img_ratio`, `video_dir`, `drop_ratio`, `json_file`, `stage`, `transform`, `remove_background`, `use_greenscreen`, `apply_crop_warping` |
| 23 | +- Loads video metadata from the provided JSON file. |
| 24 | +- Initializes decord for video reading with PyTorch tensor output. |
| 25 | + |
| 26 | +### Methods |
| 27 | + |
| 28 | +#### `__len__` |
| 29 | +Returns the length of the dataset, determined by the number of video IDs. |
| 30 | + |
| 31 | +#### `warp_and_crop_face` |
| 32 | +Processes an image tensor to detect, warp, and crop the face region: |
| 33 | +- Converts tensor to PIL image. |
| 34 | +- Removes background. |
| 35 | +- Detects face locations. |
| 36 | +- Crops the face region. |
| 37 | +- Optionally applies thin-plate-spline warping. |
| 38 | +- Converts the processed image back to a tensor and returns it. |
| 39 | + |
| 40 | +#### `load_and_process_video` |
| 41 | +Loads and processes video frames: |
| 42 | +- Checks if processed tensor file exists; if so, loads tensors. |
| 43 | +- If not, processes video frames, applies augmentation, and saves frames as PNG images and tensors. |
| 44 | +- Saves processed tensors as compressed numpy arrays for efficient loading. |
| 45 | + |
| 46 | +#### `augmentation` |
| 47 | +Applies transformations and optional background removal to the provided images: |
| 48 | +- Supports both single images and lists of images. |
| 49 | +- Returns transformed tensors. |
| 50 | + |
| 51 | +#### `remove_bg` |
| 52 | +Removes the background from the provided image using `rembg`: |
| 53 | +- Optionally applies a green screen background. |
| 54 | +- Converts image to RGB format and returns it. |
| 55 | + |
| 56 | +#### `save_video` |
| 57 | +Saves a list of frames as a video file: |
| 58 | +- Uses OpenCV to write frames to a video file. |
| 59 | + |
| 60 | +#### `process_video` |
| 61 | +Processes all frames of a video: |
| 62 | +- Uses the `process_video_frames` method to process frames. |
| 63 | + |
| 64 | +#### `process_video_frames` |
| 65 | +Processes frames of a video using decord: |
| 66 | +- Reads frames using decord and applies augmentation. |
| 67 | +- Returns processed frames. |
| 68 | + |
| 69 | +#### `__getitem__` |
| 70 | +Returns a sample from the dataset: |
| 71 | +- Loads and processes source and driving videos. |
| 72 | +- Returns a dictionary containing video IDs and frames. |
| 73 | + |
| 74 | +### Usage |
| 75 | +To use the `EMODataset` class: |
| 76 | +1. Initialize the dataset with appropriate parameters. |
| 77 | +2. Use PyTorch DataLoader to iterate over the dataset and retrieve samples. |
| 78 | +3. Process the frames as needed for training or inference in a machine learning model. |
| 79 | + |
| 80 | +### Example |
| 81 | +```python |
| 82 | +from torchvision import transforms |
| 83 | + |
| 84 | +transform = transforms.Compose([ |
| 85 | + transforms.Resize((512, 512)), |
| 86 | + transforms.ToTensor(), |
| 87 | +]) |
| 88 | + |
| 89 | +dataset = EMODataset( |
| 90 | + use_gpu=False, |
| 91 | + sample_rate=5, |
| 92 | + n_sample_frames=16, |
| 93 | + width=512, |
| 94 | + height=512, |
| 95 | + img_scale=(0.9, 1.0), |
| 96 | + video_dir="path/to/videos", |
| 97 | + json_file="path/to/metadata.json", |
| 98 | + transform=transform, |
| 99 | + remove_background=True, |
| 100 | + use_greenscreen=False, |
| 101 | + apply_crop_warping=True |
| 102 | +) |
| 103 | + |
| 104 | +for sample in dataset: |
| 105 | + print(sample) |
| 106 | +``` |
| 107 | + |
| 108 | +This class provides a comprehensive pipeline for processing video data, making it suitable for tasks such as training deep learning models on video datasets. |
0 commit comments