1
- import os .path
2
- import folder_paths
3
1
import torch
4
2
import json
5
3
from nodes import LoadImage
@@ -23,13 +21,7 @@ def INPUT_TYPES(s):
23
21
def load_image (self , image , savedPose ):
24
22
image , mask = LoadImage .load_image (self , image )
25
23
savedPose = json .loads (savedPose )
26
- masks = []
27
- #for mask in json.loads(masksJson):
28
- #masks.append(torch.full((100, 100), 1.0, dtype=torch.float32, device="cpu"))
29
- #mask = torch.full((savedPose['width'], savedPose['height']), 0.0, dtype=torch.float32, device="cpu")
30
- #mask[20:220, 20:120] = 1.0
31
- #masks.append(mask)
32
- print (savedPose ['width' ], savedPose ['height' ])
24
+ # print(savedPose['width'], savedPose['height'])
33
25
34
26
width = savedPose ['width' ]
35
27
height = savedPose ['height' ]
@@ -42,9 +34,8 @@ def load_image(self, image, savedPose):
42
34
if point [1 ] > maxCoordinates [1 ]: maxCoordinates [1 ] = min (int (point [1 ]), height )
43
35
if point [0 ] < minCoordinates [0 ]: minCoordinates [0 ] = max (int (point [0 ]), 0 )
44
36
if point [1 ] < minCoordinates [1 ]: minCoordinates [1 ] = max (int (point [1 ]), 0 )
45
- print (minCoordinates , maxCoordinates )
37
+ # print(minCoordinates, maxCoordinates)
46
38
mask = torch .full ((savedPose ['height' ], savedPose ['width' ]), 0.0 , dtype = torch .float32 , device = "cpu" )
47
- #mask[minCoordinates[1]:minCoordinates[1]+maxCoordinates[1], minCoordinates[0]:minCoordinates[0]+maxCoordinates[0]] = 1.0
48
39
mask [minCoordinates [1 ]:maxCoordinates [1 ], minCoordinates [0 ]:maxCoordinates [0 ]] = 1.0
49
40
retVal .append (mask )
50
41
0 commit comments