forked from gazebosim/gz-sim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMeshInertiaCalculator.cc
326 lines (280 loc) · 11.8 KB
/
MeshInertiaCalculator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
* Copyright (C) 2023 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include "MeshInertiaCalculator.hh"
#include <optional>
#include <vector>
#include <sdf/CustomInertiaCalcProperties.hh>
#include <sdf/Types.hh>
#include <gz/sim/Util.hh>
#include <gz/common/graphics.hh>
#include <gz/common/Mesh.hh>
#include <gz/common/MeshManager.hh>
#include <gz/math/Vector3.hh>
#include <gz/math/Pose3.hh>
#include <gz/math/MassMatrix3.hh>
#include <gz/math/Inertial.hh>
#include <gz/math/Quaternion.hh>
using namespace gz;
using namespace sim;
//////////////////////////////////////////////////
void MeshInertiaCalculator::GetMeshTriangles(
std::vector<Triangle> &_triangles,
const gz::math::Vector3d &_meshScale,
const gz::common::Mesh* _mesh)
{
// Get the vertices & indices of the mesh
double* vertArray = nullptr;
int* indArray = nullptr;
_mesh->FillArrays(&vertArray, &indArray);
// Add check to see if size of the ind array is divisible by 3
for (unsigned int i = 0; i < _mesh->IndexCount(); i += 3)
{
Triangle triangle;
triangle.v0.X() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i])];
triangle.v0.Y() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i] + 1)];
triangle.v0.Z() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i] + 2)];
triangle.v1.X() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i+1])];
triangle.v1.Y() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i+1] + 1)];
triangle.v1.Z() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i+1] + 2)];
triangle.v2.X() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i+2])];
triangle.v2.Y() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i+2] + 1)];
triangle.v2.Z() = vertArray[static_cast<ptrdiff_t>(3 * indArray[i+2] + 2)];
// Apply mesh scale to the triangle coordinates
triangle.v0 = triangle.v0 * _meshScale;
triangle.v1 = triangle.v1 * _meshScale;
triangle.v2 = triangle.v2 * _meshScale;
triangle.centroid = (triangle.v0 + triangle.v1 + triangle.v2) / 3;
_triangles.push_back(triangle);
}
}
//////////////////////////////////////////////////
void MeshInertiaCalculator::CalculateMeshCentroid(
gz::math::Pose3d &_centreOfMass,
std::vector<Triangle> &_triangles)
{
gz::math::Vector3d centroid = gz::math::Vector3d::Zero;
gz::math::Vector3d triangleCross = gz::math::Vector3d::Zero;
double totalMeshArea = 0.0;
double triangleArea = 0.0;
for (Triangle &triangle : _triangles)
{
// TODO(jasmeet0915): Use weighted average of tetrahedron
// volumes instead of triangle areas for centroid value
// as that would provide better approximation to
// center of mass
// Calculate the area of the triangle using half of
// cross product magnitude
triangleCross =
(triangle.v1 - triangle.v0).Cross(triangle.v2 - triangle.v0);
triangleArea = triangleCross.Length() / 2;
centroid = centroid + (triangle.centroid * triangleArea);
totalMeshArea = totalMeshArea + triangleArea;
}
centroid = centroid / totalMeshArea;
_centreOfMass.SetX(centroid.X());
_centreOfMass.SetY(centroid.Y());
_centreOfMass.SetZ(centroid.Z());
}
//////////////////////////////////////////////////
void MeshInertiaCalculator::TransformInertiaMatrixToCOM(
gz::math::MassMatrix3d &_massMatrix,
const gz::math::Pose3d &_centreOfMass,
const gz::math::Pose3d &_inertiaOrigin
)
{
gz::math::Vector3d comRelativeToOrigin =
_centreOfMass.CoordPositionSub(_inertiaOrigin);
gz::math::Vector3d ixxyyzz = _massMatrix.DiagonalMoments();
gz::math::Vector3d ixyxzyz = _massMatrix.OffDiagonalMoments();
double mass = _massMatrix.Mass();
// Transform the Inertia Matrix to COM using the
// reverse of the Parallel Axis Theorem
ixxyyzz.X() = ixxyyzz.X() -
mass * (comRelativeToOrigin.Y() * comRelativeToOrigin.Y()
+ comRelativeToOrigin.Z() * comRelativeToOrigin.Z());
ixxyyzz.Y() = ixxyyzz.Y() -
mass * (comRelativeToOrigin.X() * comRelativeToOrigin.X()
+ comRelativeToOrigin.Z() * comRelativeToOrigin.Z());
ixxyyzz.Z() = ixxyyzz.Z() -
mass * (comRelativeToOrigin.X() * comRelativeToOrigin.X()
+ comRelativeToOrigin.Y() * comRelativeToOrigin.Y());
ixyxzyz.X() = ixyxzyz.X() +
mass * comRelativeToOrigin.X() * comRelativeToOrigin.Y();
ixyxzyz.Y() = ixyxzyz.Y() +
mass * comRelativeToOrigin.X() * comRelativeToOrigin.Z();
ixyxzyz.Z() = ixyxzyz.Z() +
mass * comRelativeToOrigin.Y() * comRelativeToOrigin.Z();
_massMatrix.SetDiagonalMoments(ixxyyzz);
_massMatrix.SetOffDiagonalMoments(ixyxzyz);
gz::math::Quaterniond rotOffset = _massMatrix.PrincipalAxesOffset();
// If there is a rotational offset remove that
if (rotOffset != gz::math::Quaterniond::Identity)
{
// Since the Inertia Matrix of a body about the COM aligned with
// Prinicipal Axes will be diagonal, we can set off diagonal
// elements to a diagonal matrix if there is a rotational
// offset after initial transformation
_massMatrix.SetOffDiagonalMoments(gz::math::Vector3d::Zero);
}
}
//////////////////////////////////////////////////
void MeshInertiaCalculator::CalculateMassProperties(
const std::vector<Triangle>& _triangles,
double _density,
gz::math::MassMatrix3d& _massMatrix,
gz::math::Pose3d& _centreOfMass)
{
// Some coefficients for the calculation of integral terms
const double coefficients[10] = {1.0 / 6, 1.0 / 24, 1.0 / 24, 1.0 / 24,
1.0 / 60, 1.0 / 60, 1.0 / 60, 1.0 / 120,
1.0 / 120, 1.0 / 120};
// Number of triangles of in the mesh
std::size_t numTriangles = _triangles.size();
// Vector to store cross products of 2 vectors of the triangles
std::vector<gz::math::Vector3d> crosses(numTriangles);
// Caculating cross products of 2 vectors emerging from a common vertex
// This basically gives a vector normal to the plane of triangle
for (std::size_t i = 0; i < numTriangles; ++i)
{
crosses[i] =
(_triangles[i].v1 - _triangles[i].v0).Cross(
_triangles[i].v2 - _triangles[i].v0);
}
// Calculate subexpressions of the integral
std::vector<gz::math::Vector3d> f1(numTriangles), f2(numTriangles),
f3(numTriangles), g0(numTriangles), g1(numTriangles), g2(numTriangles);
for (std::size_t i = 0; i < numTriangles; ++i)
{
f1[i] = _triangles[i].v0 + _triangles[i].v1 + _triangles[i].v2;
f2[i] = _triangles[i].v0 * _triangles[i].v0 +
_triangles[i].v1 * _triangles[i].v1 +
_triangles[i].v0 * _triangles[i].v1 +
_triangles[i].v2 * f1[i];
f3[i] = _triangles[i].v0 * _triangles[i].v0 * _triangles[i].v0 +
_triangles[i].v0 * _triangles[i].v0 * _triangles[i].v1 +
_triangles[i].v0 * _triangles[i].v1 * _triangles[i].v1 +
_triangles[i].v1 * _triangles[i].v1 * _triangles[i].v1 +
_triangles[i].v2 * f2[i];
g0[i] = f2[i] + (_triangles[i].v0 + f1[i]) * (_triangles[i].v0);
g1[i] = f2[i] + (_triangles[i].v1 + f1[i]) * (_triangles[i].v1);
g2[i] = f2[i] + (_triangles[i].v2 + f1[i]) * (_triangles[i].v2);
}
// Calculate integral terms
std::vector<double> integral(10);
for (std::size_t i = 0; i < numTriangles; ++i)
{
double x0 = _triangles[i].v0.X();
double y0 = _triangles[i].v0.Y();
double z0 = _triangles[i].v0.Z();
double x1 = _triangles[i].v1.X();
double y1 = _triangles[i].v1.Y();
double z1 = _triangles[i].v1.Z();
double x2 = _triangles[i].v2.X();
double y2 = _triangles[i].v2.Y();
double z2 = _triangles[i].v2.Z();
integral[0] += crosses[i].X() * f1[i].X();
integral[1] += crosses[i].X() * f2[i].X();
integral[2] += crosses[i].Y() * f2[i].Y();
integral[3] += crosses[i].Z() * f2[i].Z();
integral[4] += crosses[i].X() * f3[i].X();
integral[5] += crosses[i].Y() * f3[i].Y();
integral[6] += crosses[i].Z() * f3[i].Z();
integral[7] += crosses[i].X() *
(y0 * g0[i].X() + y1 * g1[i].X() + y2 * g2[i].X());
integral[8] += crosses[i].Y() *
(z0 * g0[i].Y() + z1 * g1[i].Y() + z2 * g2[i].Y());
integral[9] += crosses[i].Z() *
(x0 * g0[i].Z() + x1 * g1[i].Z() + x2 * g2[i].Z());
}
for (int i = 0; i < 10; ++i)
{
integral[i] *= coefficients[i];
}
// Accumulate the result and add it to MassMatrix object of gz::math
double volume = integral[0];
double mass = volume * _density;
_centreOfMass.SetX(integral[1] / volume);
_centreOfMass.SetY(integral[2] / volume);
_centreOfMass.SetZ(integral[3] / volume);
gz::math::Vector3d ixxyyzz = gz::math::Vector3d();
gz::math::Vector3d ixyxzyz = gz::math::Vector3d();
// Diagonal Elements of the Mass Matrix
ixxyyzz.X() = (integral[5] + integral[6] - volume *
(_centreOfMass.Y() * _centreOfMass.Y() +
_centreOfMass.Z() * _centreOfMass.Z()));
ixxyyzz.Y() = (integral[4] + integral[6] - volume *
(_centreOfMass.Z() * _centreOfMass.Z() +
_centreOfMass.X() * _centreOfMass.X()));
ixxyyzz.Z() = integral[4] + integral[5] - volume *
(_centreOfMass.X() * _centreOfMass.X() +
_centreOfMass.Y() * _centreOfMass.Y());
// Off Diagonal Elements of the Mass Matrix
ixyxzyz.X() = -(integral[7] - volume * _centreOfMass.X() * _centreOfMass.Y());
ixyxzyz.Y() = -(integral[9] - volume * _centreOfMass.X() * _centreOfMass.Z());
ixyxzyz.Z() = -(integral[8] - volume * _centreOfMass.Y() * _centreOfMass.Z());
// Set the values in the MassMatrix object
_massMatrix.SetMass(mass);
_massMatrix.SetDiagonalMoments(ixxyyzz * _density);
_massMatrix.SetOffDiagonalMoments(ixyxzyz * _density);
}
//////////////////////////////////////////////////
std::optional<gz::math::Inertiald> MeshInertiaCalculator::operator()
(sdf::Errors& _errors,
const sdf::CustomInertiaCalcProperties& _calculatorParams)
{
const gz::common::Mesh *mesh = nullptr;
const double density = _calculatorParams.Density();
auto sdfMesh = _calculatorParams.Mesh();
if (sdfMesh == std::nullopt)
{
gzerr << "Could not calculate inertia for mesh "
"as it std::nullopt" << std::endl;
_errors.push_back({sdf::ErrorCode::FATAL_ERROR,
"Could not calculate mesh inertia as mesh object is"
"std::nullopt"});
return std::nullopt;
}
auto fullPath = asFullPath(sdfMesh->Uri(), sdfMesh->FilePath());
if (fullPath.empty())
{
gzerr << "Mesh geometry missing uri" << std::endl;
_errors.push_back({sdf::ErrorCode::URI_INVALID,
"Attempting to load the mesh but the URI seems to be incorrect"});
return std::nullopt;
}
// Load the Mesh
gz::common::MeshManager *meshManager = gz::common::MeshManager::Instance();
mesh = meshManager->Load(fullPath);
std::vector<Triangle> meshTriangles;
gz::math::MassMatrix3d meshMassMatrix;
gz::math::Pose3d centreOfMass;
// Create a list of Triangle objects from the mesh vertices and indices
this->GetMeshTriangles(meshTriangles, sdfMesh->Scale(), mesh);
// Calculate mesh mass properties
this->CalculateMassProperties(meshTriangles, density,
meshMassMatrix, centreOfMass);
gz::math::Inertiald meshInertial;
if (!meshInertial.SetMassMatrix(meshMassMatrix))
{
return std::nullopt;
}
else
{
meshInertial.SetPose(centreOfMass);
return meshInertial;
}
}