-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnionFind.java
104 lines (81 loc) · 2.68 KB
/
UnionFind.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/**
* UnionFind/Disjoint Set data structure implementation. This code was inspired by the union find
* implementation found in 'Algorithms Fourth Edition' by Robert Sedgewick and Kevin Wayne.
*
* @author William Fiset, [email protected]
*/
public class UnionFind {
// The number of elements in this union find
private int size;
// Used to track the size of each of the component
private int[] sz;
// id[i] points to the parent of i, if id[i] = i then i is a root node
private int[] id;
// Tracks the number of components in the union find
private int numComponents;
public UnionFind(int size) {
if (size <= 0) throw new IllegalArgumentException("Size <= 0 is not allowed");
this.size = numComponents = size;
sz = new int[size];
id = new int[size];
for (int i = 0; i < size; i++) {
id[i] = i; // Link to itself (self root)
sz[i] = 1; // Each component is originally of size one
}
}
// Find which component/set 'p' belongs to, takes amortized constant time.
public int find(int p) {
// Find the root of the component/set
int root = p;
while (root != id[root]) root = id[root];
// Compress the path leading back to the root.
// Doing this operation is called "path compression"
// and is what gives us amortized time complexity.
while (p != root) {
int next = id[p];
id[p] = root;
p = next;
}
return root;
}
// This is an alternative recursive formulation for the find method
// public int find(int p) {
// if (p == id[p]) return p;
// return id[p] = find(id[p]);
// }
// Return whether or not the elements 'p' and
// 'q' are in the same components/set.
public boolean connected(int p, int q) {
return find(p) == find(q);
}
// Return the size of the components/set 'p' belongs to
public int componentSize(int p) {
return sz[find(p)];
}
// Return the number of elements in this UnionFind/Disjoint set
public int size() {
return size;
}
// Returns the number of remaining components/sets
public int components() {
return numComponents;
}
// Unify the components/sets containing elements 'p' and 'q'
public void unify(int p, int q) {
int root1 = find(p);
int root2 = find(q);
// These elements are already in the same group!
if (root1 == root2) return;
// Merge smaller component/set into the larger one.
if (sz[root1] < sz[root2]) {
sz[root2] += sz[root1];
id[root1] = root2;
} else {
sz[root1] += sz[root2];
id[root2] = root1;
}
// Since the roots found are different we know that the
// number of components/sets has decreased by one
numComponents--;
}
}