|
4 | 4 |
|
5 | 5 | A toolkit of metrics and visualizations for model performance in data-driven materials discovery.
|
6 | 6 |
|
7 |
| -[](https://github.com/janosh/mlmatrics/actions) |
8 |
| -[](https://results.pre-commit.ci/latest/github/janosh/mlmatrics/master) |
9 |
| -[](/license) |
10 |
| -[](https://github.com/janosh/mlmatrics/graphs/contributors) |
| 7 | +[](https://github.com/janosh/ml-matrics/actions) |
| 8 | +[](https://results.pre-commit.ci/latest/github/janosh/ml-matrics/master) |
| 9 | +[](/license) |
| 10 | +[](https://github.com/janosh/ml-matrics/graphs/contributors) |
11 | 11 | [](https://python.org/downloads)
|
12 | 12 |
|
13 | 13 | </h4>
|
14 | 14 |
|
15 | 15 | ## Installation
|
16 | 16 |
|
17 | 17 | ```sh
|
18 |
| -pip install -U git+https://github.com/janosh/mlmatrics |
| 18 | +pip install -U git+https://github.com/janosh/ml-matrics |
19 | 19 | ```
|
20 | 20 |
|
21 | 21 | For a locally editable install, use
|
22 | 22 |
|
23 | 23 | ```sh
|
24 |
| -git clone https://github.com/janosh/mlmatrics && pip install -e mlmatrics |
| 24 | +git clone https://github.com/janosh/ml-matrics && pip install -e ml-matrics |
25 | 25 | ```
|
26 | 26 |
|
27 | 27 | To specify a dependence on this package in `requirements.txt`, use
|
28 | 28 |
|
29 | 29 | ```txt
|
30 | 30 | pandas==1.1.2
|
31 | 31 | numpy==1.20.1
|
32 |
| -git+git://github.com/janosh/mlmatrics |
| 32 | +git+git://github.com/janosh/ml-matrics |
33 | 33 | ```
|
34 | 34 |
|
35 | 35 | To specify a specific branch or commit, append its name or hash, e.g.
|
36 | 36 |
|
37 | 37 | ```txt
|
38 |
| -git+git://github.com/janosh/mlmatrics@master # default |
39 |
| -git+git://github.com/janosh/mlmatrics@41b95ec |
| 38 | +git+git://github.com/janosh/ml-matrics@master # default |
| 39 | +git+git://github.com/janosh/ml-matrics@41b95ec |
40 | 40 | ```
|
41 | 41 |
|
42 | 42 | ## Parity Plots
|
43 | 43 |
|
44 |
| -See [`mlmatrics/parity.py`](mlmatrics/parity.py). |
| 44 | +See [`ml_matrics/parity.py`](ml_matrics/parity.py). |
45 | 45 |
|
46 |
| -| [`density_scatter(xs, ys, ...)`](mlmatrics/parity.py) | [`density_scatter_with_hist(xs, ys, ...)`](mlmatrics/parity.py) | |
47 |
| -| :--------------------------------------------------------------: | :----------------------------------------------------------------: | |
48 |
| -|  |  | |
49 |
| -| [`density_hexbin(xs, ys, ...)`](mlmatrics/parity.py) | [`density_hexbin_with_hist(xs, ys, ...)`](mlmatrics/parity.py) | |
50 |
| -|  |  | |
51 |
| -| [`scatter_with_err_bar(xs, ys, yerr, ...)`](mlmatrics/parity.py) | [`residual_vs_actual(y_true, y_pred, ...)`](mlmatrics/parity.py) | |
52 |
| -|  |  | |
| 46 | +| [`density_scatter(xs, ys, ...)`](ml_matrics/parity.py) | [`density_scatter_with_hist(xs, ys, ...)`](ml_matrics/parity.py) | |
| 47 | +| :---------------------------------------------------------------: | :----------------------------------------------------------------: | |
| 48 | +|  |  | |
| 49 | +| [`density_hexbin(xs, ys, ...)`](ml_matrics/parity.py) | [`density_hexbin_with_hist(xs, ys, ...)`](ml_matrics/parity.py) | |
| 50 | +|  |  | |
| 51 | +| [`scatter_with_err_bar(xs, ys, yerr, ...)`](ml_matrics/parity.py) | [`residual_vs_actual(y_true, y_pred, ...)`](ml_matrics/parity.py) | |
| 52 | +|  |  | |
53 | 53 |
|
54 | 54 | ## Elements
|
55 | 55 |
|
56 |
| -See [`mlmatrics/elements.py`](mlmatrics/elements.py). |
| 56 | +See [`ml_matrics/elements.py`](ml_matrics/elements.py). |
57 | 57 |
|
58 |
| -| [`ptable_elemental_prevalence(compositions)`](mlmatrics/elements.py) | [`ptable_elemental_prevalence(compositions, log=True)`](mlmatrics/elements.py) | |
59 |
| -| :--------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------: | |
60 |
| -|  |  | |
61 |
| -| [`hist_elemental_prevalence(compositions)`](mlmatrics/elements.py) | [`hist_elemental_prevalence(compositions, log=True, bar_values='count')`](mlmatrics/elements.py) | |
62 |
| -|  |  | |
63 |
| -| [`ptable_elemental_ratio(comps_a, comps_b)`](mlmatrics/elements.py) | [`ptable_elemental_ratio(comps_b, comps_a, log=True)`](mlmatrics/elements.py) | |
64 |
| -|  |  | |
| 58 | +| [`ptable_elemental_prevalence(compositions)`](ml_matrics/elements.py) | [`ptable_elemental_prevalence(compositions, log=True)`](ml_matrics/elements.py) | |
| 59 | +| :--------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: | |
| 60 | +|  |  | |
| 61 | +| [`hist_elemental_prevalence(compositions)`](ml_matrics/elements.py) | [`hist_elemental_prevalence(compositions, log=True, bar_values='count')`](ml_matrics/elements.py) | |
| 62 | +|  |  | |
| 63 | +| [`ptable_elemental_ratio(comps_a, comps_b)`](ml_matrics/elements.py) | [`ptable_elemental_ratio(comps_b, comps_a, log=True)`](ml_matrics/elements.py) | |
| 64 | +|  |  | |
65 | 65 |
|
66 | 66 | ## Uncertainty Calibration
|
67 | 67 |
|
68 |
| -See [`mlmatrics/quantile.py`](mlmatrics/quantile.py). |
| 68 | +See [`ml_matrics/quantile.py`](ml_matrics/quantile.py). |
69 | 69 |
|
70 |
| -| [`qq_gaussian(y_true, y_pred, y_std)`](mlmatrics/quantile.py) | [`qq_gaussian(y_true, y_pred, y_std: dict)`](mlmatrics/quantile.py) | |
71 |
| -| :-----------------------------------------------------------: | :-----------------------------------------------------------------: | |
72 |
| -|  |  | |
| 70 | +| [`qq_gaussian(y_true, y_pred, y_std)`](ml_matrics/quantile.py) | [`qq_gaussian(y_true, y_pred, y_std: dict)`](ml_matrics/quantile.py) | |
| 71 | +| :------------------------------------------------------------: | :------------------------------------------------------------------: | |
| 72 | +|  |  | |
73 | 73 |
|
74 | 74 | ## Ranking
|
75 | 75 |
|
76 |
| -See [`mlmatrics/ranking.py`](mlmatrics/ranking.py). |
| 76 | +See [`ml_matrics/ranking.py`](ml_matrics/ranking.py). |
77 | 77 |
|
78 |
| -| [`err_decay(y_true, y_pred, y_std)`](mlmatrics/ranking.py) | [`err_decay(y_true, y_pred, y_std: dict)`](mlmatrics/ranking.py) | |
79 |
| -| :--------------------------------------------------------: | :--------------------------------------------------------------: | |
80 |
| -|  |  | |
| 78 | +| [`err_decay(y_true, y_pred, y_std)`](ml_matrics/ranking.py) | [`err_decay(y_true, y_pred, y_std: dict)`](ml_matrics/ranking.py) | |
| 79 | +| :---------------------------------------------------------: | :---------------------------------------------------------------: | |
| 80 | +|  |  | |
81 | 81 |
|
82 | 82 | ## Cumulative Error and Residual
|
83 | 83 |
|
84 |
| -See [`mlmatrics/cumulative.py`](mlmatrics/cumulative.py). |
| 84 | +See [`ml_matrics/cumulative.py`](ml_matrics/cumulative.py). |
85 | 85 |
|
86 |
| -| [`cum_err(preds, targets)`](mlmatrics/cumulative.py) | [`cum_res(preds, targets)`](mlmatrics/cumulative.py) | |
87 |
| -| :--------------------------------------------------: | :----------------------------------------------------: | |
88 |
| -|  |  | |
| 86 | +| [`cum_err(preds, targets)`](ml_matrics/cumulative.py) | [`cum_res(preds, targets)`](ml_matrics/cumulative.py) | |
| 87 | +| :---------------------------------------------------: | :----------------------------------------------------: | |
| 88 | +|  |  | |
89 | 89 |
|
90 | 90 | ## Classification Metrics
|
91 | 91 |
|
92 |
| -See [`mlmatrics/relevance.py`](mlmatrics/relevance.py). |
| 92 | +See [`ml_matrics/relevance.py`](ml_matrics/relevance.py). |
93 | 93 |
|
94 |
| -| [`roc_curve(targets, proba_pos)`](mlmatrics/relevance.py) | [`precision_recall_curve(targets, proba_pos)`](mlmatrics/relevance.py) | |
95 |
| -| :-------------------------------------------------------: | :--------------------------------------------------------------------: | |
96 |
| -|  |  | |
| 94 | +| [`roc_curve(targets, proba_pos)`](ml_matrics/relevance.py) | [`precision_recall_curve(targets, proba_pos)`](ml_matrics/relevance.py) | |
| 95 | +| :--------------------------------------------------------: | :---------------------------------------------------------------------: | |
| 96 | +|  |  | |
97 | 97 |
|
98 | 98 | ## Correlation
|
99 | 99 |
|
100 |
| -See [`mlmatrics/correlation.py`](mlmatrics/correlation.py). |
| 100 | +See [`ml_matrics/correlation.py`](ml_matrics/correlation.py). |
101 | 101 |
|
102 |
| -| [`marchenko_pastur(corr_mat, gamma=ncols/nrows)`](mlmatrics/correlation.py) | [`marchenko_pastur(corr_mat_significant_eval, gamma=ncols/nrows)`](mlmatrics/correlation.py) | |
103 |
| -| :-------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | |
104 |
| -|  |  | |
| 102 | +| [`marchenko_pastur(corr_mat, gamma=ncols/nrows)`](ml_matrics/correlation.py) | [`marchenko_pastur(corr_mat_significant_eval, gamma=ncols/nrows)`](ml_matrics/correlation.py) | |
| 103 | +| :--------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------: | |
| 104 | +|  |  | |
105 | 105 |
|
106 | 106 | ## Histograms
|
107 | 107 |
|
108 |
| -See [`mlmatrics/histograms.py`](mlmatrics/histograms.py). |
| 108 | +See [`ml_matrics/histograms.py`](ml_matrics/histograms.py). |
109 | 109 |
|
110 |
| -| [`residual_hist(y_true, y_pred)`](mlmatrics/histograms.py) | [`true_pred_hist(y_true, y_pred, y_std)`](mlmatrics/histograms.py) | |
111 |
| -| :----------------------------------------------------------: | :----------------------------------------------------------------: | |
112 |
| -|  |  | |
113 |
| -| [`spacegroup_hist(y_true, y_pred)`](mlmatrics/histograms.py) | | |
114 |
| -|  | | |
| 110 | +| [`residual_hist(y_true, y_pred)`](ml_matrics/histograms.py) | [`true_pred_hist(y_true, y_pred, y_std)`](ml_matrics/histograms.py) | |
| 111 | +| :-----------------------------------------------------------: | :-----------------------------------------------------------------: | |
| 112 | +|  |  | |
| 113 | +| [`spacegroup_hist(y_true, y_pred)`](ml_matrics/histograms.py) | | |
| 114 | +|  | | |
115 | 115 |
|
116 | 116 | ## Adding Assets
|
117 | 117 |
|
|
0 commit comments