25
25
f"{ DATA_DIR } /{ model_name .lower ()} -mp-initial-structures.csv" , nrows = 100
26
26
).set_index ("material_id" )
27
27
28
- df ["e_above_mp_hull " ] = df_hull .e_above_mp_hull
28
+ df ["e_above_hull_mp " ] = df_hull .e_above_hull_mp
29
29
30
30
model_preds = df .filter (like = r"_pred" ).mean (axis = 1 )
31
31
@@ -62,7 +62,7 @@ def test_precision_recall_vs_calc_count(
62
62
63
63
ax = precision_recall_vs_calc_count (
64
64
e_above_hull_error = df .e_above_hull_pred ,
65
- e_above_hull_true = df .e_above_mp_hull ,
65
+ e_above_hull_true = df .e_above_hull_mp ,
66
66
color = color ,
67
67
label = model_name ,
68
68
intersect_lines = intersect_lines ,
@@ -96,7 +96,7 @@ def test_precision_recall_vs_calc_count_raises(
96
96
with pytest .raises (expected_exc , match = match_pat ):
97
97
precision_recall_vs_calc_count (
98
98
e_above_hull_error = test_dfs ["Wren" ].e_above_hull_pred ,
99
- e_above_hull_true = test_dfs ["Wren" ].e_above_mp_hull ,
99
+ e_above_hull_true = test_dfs ["Wren" ].e_above_hull_mp ,
100
100
** kwargs ,
101
101
)
102
102
@@ -114,7 +114,7 @@ def test_rolling_mae_vs_hull_dist(
114
114
):
115
115
ax = rolling_mae_vs_hull_dist (
116
116
e_above_hull_pred = df .e_above_hull_pred ,
117
- e_above_hull_true = df .e_above_mp_hull ,
117
+ e_above_hull_true = df .e_above_hull_mp ,
118
118
color = color ,
119
119
label = model_name ,
120
120
ax = ax ,
@@ -150,7 +150,7 @@ def test_hist_classified_stable_as_func_of_hull_dist(
150
150
151
151
ax = hist_classified_stable_as_func_of_hull_dist (
152
152
e_above_hull_pred = df .e_above_hull_pred ,
153
- e_above_hull_true = df .e_above_mp_hull ,
153
+ e_above_hull_true = df .e_above_hull_mp ,
154
154
ax = ax ,
155
155
stability_threshold = stability_threshold ,
156
156
stability_crit = stability_crit ,
0 commit comments