Skip to content

Commit d221cee

Browse files
committed
update email address, rename (fetch_process_wbm_dataset->compile_wbm_test_set).py
update site deps, set heading CSS text-wrap: balance;
1 parent 24b04d3 commit d221cee

File tree

12 files changed

+31
-29
lines changed

12 files changed

+31
-29
lines changed

citation.cff

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ authors:
66
- given-names: Janosh
77
family-names: Riebesell
88
affiliation: University of Cambridge, Lawrence Berkeley National Laboratory
9-
email: janosh@lbl.gov
9+
email: janosh.riebesell@gmail.gov
1010
orcid: https://orcid.org/0000-0001-5233-3462
1111
corresponding: true
1212
affil_key: 1, 2
File renamed without changes.

data/wbm/readme.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ Each iteration has varying numbers of materials which are counted by the 2nd int
1616

1717
## 🪓   Data Processing Steps
1818

19-
The full set of processing steps used to curate the WBM test set from the raw data files (downloaded from [URLs listed below](#--links-to-wbm-files)) can be found in [`data/wbm/fetch_process_wbm_dataset.py`](https://github.com/janosh/matbench-discovery/blob/site/data/wbm/fetch_process_wbm_dataset.py). Processing steps taken:
19+
The full set of processing steps used to curate the WBM test set from the raw data files (downloaded from [URLs listed below](#--links-to-wbm-files)) can be found in [`data/wbm/compile_wbm_test_set.py`](https://github.com/janosh/matbench-discovery/blob/site/data/wbm/compile_wbm_test_set.py). Processing steps taken:
2020

2121
- re-format material IDs: `step_1-0->wbm-1-1`, `step_1-1->wbm-1-2`, ...
2222
- correctly align initial structures to DFT-relaxed [`ComputedStructureEntries`](https://github.com/materialsproject/pymatgen/blob/02a4ca8aa0277b5f6db11f4de4fdbba129de70a5/pymatgen/entries/computed_entries.py#L536) (the initial structure files had 6 extra structures inserted towards the end of step 3 which had no corresponding IDs in the summary file)
@@ -31,7 +31,7 @@ The full set of processing steps used to curate the WBM test set from the raw da
3131
- apply the [`MaterialsProject2020Compatibility`](https://github.com/materialsproject/pymatgen/blob/02a4ca8aa0277b5f6db11f4de4fdbba129de70a5/pymatgen/entries/compatibility.py#L823) energy correction scheme to the formation energies
3232
- compute energy to the Materials Project convex hull constructed from all MP `ComputedStructureEntries` queried on 2023-02-07 ([database release 2021.05.13](https://docs.materialsproject.org/changes/database-versions#v2021.05.13))
3333

34-
Invoking the script `python fetch_process_wbm_dataset.py` will auto-download and regenerate the WBM test set files from scratch. If you find
34+
Invoking the script `python compile_wbm_test_set.py` will auto-download and regenerate the WBM test set files from scratch. If you find
3535

3636
- any questionable structures or data records in the released test set, or
3737
- inconsistencies between the files on GitHub vs the output of that script,

matbench_discovery/data.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ def load(
125125
raise
126126

127127
if Key.mat_id in df:
128-
df = df.set_index(Key.mat_id)
128+
df = df.set_index(Key.mat_id.value)
129129
if hydrate:
130130
for col in df:
131131
if not isinstance(df[col].iloc[0], dict):
@@ -270,4 +270,4 @@ def _on_not_found(self, key: str, path: str) -> None: # type: ignore[override]
270270

271271

272272
df_wbm = load("wbm_summary")
273-
df_wbm[Key.mat_id] = df_wbm.index
273+
df_wbm[Key.mat_id.value] = df_wbm.index

models/chgnet/metadata.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ authors:
1515
orcid: https://orcid.org/0000-0003-1974-028X
1616
- name: Janosh Riebesell
1717
affiliation: University of Cambridge, Lawrence Berkeley National Laboratory
18-
email: janosh@lbl.gov
18+
email: janosh.riebesell@gmail.gov
1919
orcid: https://orcid.org/0000-0001-5233-3462
2020
- name: Kevin Han
2121
affiliation: UC Berkeley

models/wrenformer/metadata.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ date_published: "2021-06-21"
66
authors:
77
- name: Janosh Riebesell
88
affiliation: University of Cambridge, Lawrence Berkeley National Laboratory
9-
email: janosh@lbl.gov
9+
email: janosh.riebesell@gmail.gov
1010
orcid: https://orcid.org/0000-0001-5233-3462
1111
- name: Rhys Goodall
1212
affiliation: University of Cambridge

readme.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,6 @@ Our results show that ML models have become robust enough to deploy them as tria
2727

2828
We welcome contributions that add new models to the leaderboard through GitHub PRs. See the [contributing guide](https://janosh.github.io/matbench-discovery/contribute) for details.
2929

30-
If you're interested in joining this work, feel free to [open a GitHub discussion](https://github.com/janosh/matbench-discovery/discussions) or [send an email](mailto:janosh@lbl.gov?subject=Collaborate%20on%20Matbench%20Discovery).
30+
If you're interested in joining this work, feel free to [open a GitHub discussion](https://github.com/janosh/matbench-discovery/discussions) or [send an email](mailto:janosh.riebesell@gmail.gov?subject=Collaborate%20on%20Matbench%20Discovery).
3131

3232
For detailed results and analysis, check out the [preprint](https://janosh.github.io/matbench-discovery/preprint).

scripts/model_figs/make_metrics_tables.py

+8-9
Original file line numberDiff line numberDiff line change
@@ -32,17 +32,16 @@
3232
df_metrics.loc[train_size_col] = df_metrics_10k.loc[train_size_col] = ""
3333
for model in df_metrics:
3434
model_name = name_map.get(model, model)
35-
if model_name not in MODEL_METADATA:
35+
if not (model_data := MODEL_METADATA.get(model_name)):
3636
continue
37-
n_structs = MODEL_METADATA[model_name]["training_set"]["n_structures"]
38-
n_materials = MODEL_METADATA[model_name]["training_set"].get("n_materials")
37+
n_structs = model_data["training_set"]["n_structures"]
38+
n_structs_str = si_fmt(n_structs)
3939

40-
n_structs_fmt = si_fmt(n_structs)
41-
if n_materials:
42-
n_structs_fmt += f" <small>({si_fmt(n_materials)})</small>"
40+
if n_materials := model_data["training_set"].get("n_materials"):
41+
n_structs_str += f" <small>({si_fmt(n_materials)})</small>"
4342

44-
df_metrics.loc[train_size_col, model] = n_structs_fmt
45-
df_metrics_10k.loc[train_size_col, model] = n_structs_fmt
43+
df_metrics.loc[train_size_col, model] = n_structs_str
44+
df_metrics_10k.loc[train_size_col, model] = n_structs_str
4645

4746

4847
# %% add dummy classifier results to df_metrics
@@ -183,7 +182,7 @@
183182
f"{SITE_FIGS}/metrics-table{label}.svelte",
184183
inline_props="class='roomy'",
185184
# draw dotted line between classification and regression metrics
186-
styles=f"{col_selector} {{ border-left: 2px dotted white; }}{hide_scroll_bar}",
185+
styles=f"{col_selector} {{ border-left: 1px solid white; }}{hide_scroll_bar}",
187186
)
188187
try:
189188
df_to_pdf(styler, f"{PDF_FIGS}/metrics-table{label}.pdf")

site/package.json

+9-9
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
{
22
"name": "matbench-discovery",
33
"description": "Benchmarking machine learning energy models for materials discovery.",
4-
"author": "Janosh Riebesell <janosh@lbl.gov>",
4+
"author": "Janosh Riebesell <janosh.riebesell@gmail.gov>",
55
"homepage": "https://janosh.github.io/matbench-discovery",
66
"repository": "https://github.com/janosh/matbench-discovery",
77
"package": "https://pypi.org/project/matbench-discovery",
@@ -20,35 +20,35 @@
2020
"@iconify/svelte": "^3.1.6",
2121
"@rollup/plugin-yaml": "^4.1.2",
2222
"@sveltejs/adapter-static": "^3.0.1",
23-
"@sveltejs/kit": "^2.3.2",
23+
"@sveltejs/kit": "^2.4.1",
2424
"@sveltejs/vite-plugin-svelte": "^3.0.1",
25-
"@typescript-eslint/eslint-plugin": "^6.18.1",
26-
"@typescript-eslint/parser": "^6.18.1",
25+
"@typescript-eslint/eslint-plugin": "^6.19.0",
26+
"@typescript-eslint/parser": "^6.19.0",
2727
"d3-scale-chromatic": "^3.0.0",
2828
"elementari": "^0.2.3",
2929
"eslint": "^8.56.0",
3030
"eslint-plugin-svelte": "^2.35.1",
31-
"hastscript": "^8.0.0",
31+
"hastscript": "^9.0.0",
3232
"highlight.js": "^11.9.0",
3333
"js-yaml": "^4.1.0",
3434
"katex": "^0.16.9",
3535
"mdsvex": "^0.11.0",
36-
"prettier": "^3.2.2",
36+
"prettier": "^3.2.4",
3737
"prettier-plugin-svelte": "^3.1.2",
3838
"rehype-autolink-headings": "^7.1.0",
3939
"rehype-katex-svelte": "^1.2.0",
4040
"rehype-slug": "^6.0.0",
4141
"remark-math": "3.0.0",
42-
"svelte": "^4.2.8",
42+
"svelte": "^4.2.9",
4343
"svelte-check": "^3.6.3",
4444
"svelte-multiselect": "^10.2.0",
4545
"svelte-preprocess": "^5.1.3",
46-
"svelte-toc": "^0.5.6",
46+
"svelte-toc": "^0.5.7",
4747
"svelte-zoo": "^0.4.9",
4848
"svelte2tsx": "^0.7.0",
4949
"tslib": "^2.6.2",
5050
"typescript": "5.3.3",
51-
"vite": "^5.0.11"
51+
"vite": "^5.0.12"
5252
},
5353
"prettier": {
5454
"semi": false,

site/src/app.css

+3
Original file line numberDiff line numberDiff line change
@@ -152,6 +152,9 @@ blockquote > :is(:first-child, :last-child) {
152152
margin: 0 auto;
153153
}
154154

155+
:where(h1, h2, h3, h4, h5, h6, address) {
156+
text-wrap: balance;
157+
}
155158
:where(h2, h3, h4, h5, h6) {
156159
scroll-margin-top: 50px;
157160
transition: 0.3s;

site/src/lib/Footer.svelte

+1-1
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@
2525
<footer>
2626
<nav>
2727
<a href="{repository}/issues">Issues</a>
28-
<a href="mailto:janosh@lbl.gov?subject=Matbench Discovery">Contact</a>
28+
<a href="mailto:janosh.riebesell@gmail.gov?subject=Matbench Discovery">Contact</a>
2929
<a href="/changelog">Changelog</a>
3030
<button
3131
on:click={() => (show_tips = true)}

site/src/routes/models/+page.svelte

+2-2
Original file line numberDiff line numberDiff line change
@@ -63,8 +63,8 @@
6363
<h1>Leaderboard</h1>
6464

6565
<p style="text-align: center;">
66-
Sort models by stability classification metrics, by predicted convex hull distance
67-
regressions metrics or by their tun time.
66+
Sort models by different metrics (thermodynamic stability classification, convex hull
67+
distance regressions or tun time).
6868
</p>
6969

7070
<span>

0 commit comments

Comments
 (0)