|
| 1 | +# %% |
| 2 | +from datetime import datetime |
| 3 | + |
| 4 | +import pandas as pd |
| 5 | +import plotly.express as px |
| 6 | +import plotly.io as pio |
| 7 | +from pymatviz.utils import add_identity_line |
| 8 | + |
| 9 | +from ml_stability import ROOT |
| 10 | + |
| 11 | + |
| 12 | +__author__ = "Janosh Riebesell" |
| 13 | +__date__ = "2022-06-18" |
| 14 | + |
| 15 | + |
| 16 | +pio.templates.default = "plotly_white" |
| 17 | + |
| 18 | +today = f"{datetime.now():%Y-%m-%d}" |
| 19 | + |
| 20 | + |
| 21 | +# %% |
| 22 | +df_wbm = pd.read_json( |
| 23 | + f"{ROOT}/data/2022-06-26-wbm-cses-and-initial-structures.json.gz" |
| 24 | +).set_index("material_id") |
| 25 | + |
| 26 | + |
| 27 | +# %% spread M3GNet post-pseudo-relaxation lattice params into separate columns |
| 28 | +df_m3gnet = pd.read_json( |
| 29 | + |
| 30 | +).set_index("material_id") |
| 31 | + |
| 32 | +print("Number of WBM crystals for which we have M3GNet results:") |
| 33 | +print(f"{len(df_m3gnet):,} / {len(df_wbm):,} = {len(df_m3gnet)/len(df_wbm):.1%}") |
| 34 | + |
| 35 | + |
| 36 | +# %% |
| 37 | +df_m3gnet["final_energy"] = df_m3gnet.trajectory.map(lambda x: x["energies"][-1][0]) |
| 38 | + |
| 39 | +df_m3gnet_lattice = pd.json_normalize( |
| 40 | + df_m3gnet.final_structure.map(lambda x: x["lattice"]) |
| 41 | +).add_prefix("m3gnet_") |
| 42 | +df_m3gnet[df_m3gnet_lattice.columns] = df_m3gnet_lattice.to_numpy() |
| 43 | +df_m3gnet |
| 44 | + |
| 45 | + |
| 46 | +# %% spread WBM initial and final lattice params into separate columns |
| 47 | +df_m3gnet["cse"] = df_wbm.cse |
| 48 | +df_wbm_final_lattice = pd.json_normalize( |
| 49 | + df_m3gnet.cse.map(lambda x: x["structure"]["lattice"]) |
| 50 | +).add_prefix("final_wbm_") |
| 51 | +df_m3gnet[df_wbm_final_lattice.columns] = df_wbm_final_lattice.to_numpy() |
| 52 | + |
| 53 | + |
| 54 | +df_m3gnet["initial_structure"] = df_wbm.initial_structure |
| 55 | +df_wbm_initial_lattice = pd.json_normalize( |
| 56 | + df_m3gnet.initial_structure.map(lambda x: x["lattice"]) |
| 57 | +).add_prefix("initial_wbm_") |
| 58 | +df_m3gnet[df_wbm_initial_lattice.columns] = df_wbm_initial_lattice.to_numpy() |
| 59 | + |
| 60 | + |
| 61 | +# %% |
| 62 | +df_wbm_final_lattice = pd.json_normalize( |
| 63 | + df_wbm.cse.map(lambda x: x["structure"]["lattice"]) |
| 64 | +).add_prefix("final_wbm_") |
| 65 | +df_wbm = df_wbm.join(df_wbm_final_lattice) |
| 66 | + |
| 67 | +df_wbm_initial_lattice = pd.json_normalize( |
| 68 | + df_wbm.initial_structure.map(lambda x: x["lattice"]) |
| 69 | +).add_prefix("initial_wbm_") |
| 70 | +df_wbm[df_wbm_initial_lattice.columns] = df_wbm_initial_lattice |
| 71 | + |
| 72 | +print(f"{df_wbm.isna().sum()=}") |
| 73 | + |
| 74 | +df_wbm.query("initial_wbm_matrix.isna()") |
| 75 | + |
| 76 | + |
| 77 | +# %% |
| 78 | +px.histogram( |
| 79 | + df_m3gnet.filter(like="volume"), |
| 80 | + nbins=500, |
| 81 | + barmode="overlay", |
| 82 | + opacity=0.5, |
| 83 | + range_x=[0, 500], |
| 84 | +) |
| 85 | + |
| 86 | + |
| 87 | +# %% |
| 88 | +fig = px.scatter( |
| 89 | + df_m3gnet.round(1), |
| 90 | + x="final_wbm_volume", |
| 91 | + y=["initial_wbm_volume", "m3gnet_volume"], |
| 92 | + hover_data=[df_m3gnet.index], |
| 93 | +) |
| 94 | +add_identity_line(fig) |
| 95 | +fig.update_layout( |
| 96 | + title="Slightly tighter spread of M3GNet-relaxed vs initial WBM volumes" |
| 97 | +) |
| 98 | +fig.show() |
| 99 | + |
| 100 | + |
| 101 | +# %% histogram of alpha lattice angles (similar results for beta and gamma) |
| 102 | +fig = px.histogram( |
| 103 | + df_m3gnet.filter(like="alpha"), nbins=1000, barmode="overlay", log_y=True |
| 104 | +) |
| 105 | +# fig.write_image("plots/alpha-wbm-angles.png", scale=2) |
| 106 | +fig.show() |
| 107 | + |
| 108 | + |
| 109 | +# %% |
| 110 | +px.histogram( |
| 111 | + df_m3gnet.filter(regex="_c$"), |
| 112 | + nbins=1000, |
| 113 | + log_y=True, |
| 114 | + barmode="overlay", |
| 115 | + opacity=0.5, |
| 116 | +) |
0 commit comments