|
24 | 24 |
|
25 | 25 | module_dir = os.path.dirname(__file__)
|
26 | 26 | today = f"{datetime.now():%Y-%m-%d}"
|
27 |
| -ensemble_id = "wrenformer-e_form-ensemble-1" |
28 |
| -run_name = f"{today}-{ensemble_id}-IS2RE" |
| 27 | +data_path = f"{ROOT}/data/wbm/2022-10-19-wbm-summary.csv" |
| 28 | +assert "wbm" in data_path |
| 29 | +run_name = "wrenformer-wbm-IS2RE" |
29 | 30 |
|
30 | 31 | slurm_submit_python(
|
31 | 32 | job_name=run_name,
|
|
38 | 39 |
|
39 | 40 |
|
40 | 41 | # %%
|
41 |
| -data_path = f"{ROOT}/data/wbm/2022-10-19-wbm-summary.csv" |
42 | 42 | target_col = "e_form_per_atom_mp2020_corrected"
|
43 | 43 | input_col = "wyckoff_spglib"
|
44 | 44 | df = pd.read_csv(data_path).dropna(subset=input_col).set_index("material_id")
|
|
58 | 58 |
|
59 | 59 | # %%
|
60 | 60 | wandb.login()
|
61 |
| -wandb_api = wandb.Api() |
62 |
| -runs = wandb_api.runs( |
63 |
| - "janosh/matbench-discovery", |
64 |
| - filters={ |
65 |
| - "$and": [{"created_at": {"$gt": "2022-11-10", "$lt": "2022-11-11"}}], |
66 |
| - "display_name": "wrenformer-robust-mp-formation_energy_per_atom-epochs=300", |
67 |
| - }, |
68 |
| -) |
| 61 | +filters = { |
| 62 | + "$and": [{"created_at": {"$gt": "2022-11-10", "$lt": "2022-11-11"}}], |
| 63 | + "display_name": "wrenformer-robust-mp-formation_energy_per_atom-epochs=300", |
| 64 | +} |
| 65 | +runs = wandb.Api().runs("janosh/matbench-discovery", filters=filters) |
69 | 66 |
|
70 |
| -assert len(runs) == 10, f"Expected 10 runs, got {len(runs)} for {ensemble_id=}" |
| 67 | +assert len(runs) == 10, f"Expected 10 runs, got {len(runs)} for {filters=}" |
71 | 68 |
|
72 | 69 |
|
73 | 70 | # %%
|
74 |
| -df, ensemble_metrics = predict_from_wandb_checkpoints( |
75 |
| - runs, data_loader=data_loader, df=df, model_cls=Wrenformer |
| 71 | +df, _ensemble_metrics = predict_from_wandb_checkpoints( |
| 72 | + runs, data_loader=data_loader, df=df, model_cls=Wrenformer, target_col=target_col |
76 | 73 | )
|
77 | 74 |
|
78 | 75 | df.round(6).to_csv(f"{module_dir}/{today}-{run_name}-preds.csv")
|
0 commit comments