Skip to content

Commit 50f5821

Browse files
committed
fix tests/test_models.py::test_model_dirs_have_metadata - AssertionError: Missing metadata file: /home/runner/work/matbench-discovery/matbench-discovery/models/alignn_ff/metadata.yml
assert False
1 parent d324b02 commit 50f5821

File tree

5 files changed

+63
-6
lines changed

5 files changed

+63
-6
lines changed

.github/workflows/gh-pages.yml

-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,6 @@ jobs:
1313
with:
1414
python-version: "3.11"
1515
working-directory: site
16-
install-cmd: npm install --force
1716
pre-build: |
1817
pip install lazydocs
1918
# lazydocs needs package deps to be installed

scripts/model_figs/cumulative_metrics.py

+5-1
Original file line numberDiff line numberDiff line change
@@ -64,6 +64,10 @@
6464
font=dict(size=14),
6565
)
6666
fig.update_traces(line=dict(width=3))
67+
fig.layout.legend.update(
68+
orientation="h", yanchor="bottom", y=1.1, xanchor="center", x=0.5
69+
)
70+
6771
for trace in fig.data:
6872
# show only the N best models by default
6973
if trace.name in df_metrics.T.sort_values("F1").index[:-6]:
@@ -109,4 +113,4 @@
109113
# %%
110114
img_name = f"cumulative-{'-'.join(metrics).lower()}"
111115
save_fig(fig, f"{FIGS}/{img_name}.svelte")
112-
save_fig(fig, f"{PDF_FIGS}/{img_name}.pdf", width=900, height=330)
116+
save_fig(fig, f"{PDF_FIGS}/{img_name}.pdf", width=900, height=400)

site/src/figs/cumulative-precision-recall.svelte

+1-1
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

site/src/routes/preprint/references.yaml

+54
Original file line numberDiff line numberDiff line change
@@ -1645,6 +1645,60 @@ references:
16451645
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489092/
16461646
volume: '22'
16471647

1648+
- id: lan_adsorbml_2023
1649+
abstract: >-
1650+
Computational catalysis is playing an increasingly significant role in the
1651+
design of catalysts across a wide range of applications. A common task for
1652+
many computational methods is the need to accurately compute the minimum
1653+
binding energy - the adsorption energy - for an adsorbate and a catalyst
1654+
surface of interest. Traditionally, the identification of low energy
1655+
adsorbate-surface configurations relies on heuristic methods and researcher
1656+
intuition. As the desire to perform high-throughput screening increases, it
1657+
becomes challenging to use heuristics and intuition alone. In this paper, we
1658+
demonstrate machine learning potentials can be leveraged to identify low
1659+
energy adsorbate-surface configurations more accurately and efficiently. Our
1660+
algorithm provides a spectrum of trade-offs between accuracy and efficiency,
1661+
with one balanced option finding the lowest energy configuration, within a
1662+
0.1 eV threshold, 86.33% of the time, while achieving a 1331x speedup in
1663+
computation. To standardize benchmarking, we introduce the Open Catalyst
1664+
Dense dataset containing nearly 1,000 diverse surfaces and 85,658 unique
1665+
configurations.
1666+
accessed:
1667+
- year: 2023
1668+
month: 8
1669+
day: 7
1670+
author:
1671+
- family: Lan
1672+
given: Janice
1673+
- family: Palizhati
1674+
given: Aini
1675+
- family: Shuaibi
1676+
given: Muhammed
1677+
- family: Wood
1678+
given: Brandon M.
1679+
- family: Wander
1680+
given: Brook
1681+
- family: Das
1682+
given: Abhishek
1683+
- family: Uyttendaele
1684+
given: Matt
1685+
- family: Zitnick
1686+
given: C. Lawrence
1687+
- family: Ulissi
1688+
given: Zachary W.
1689+
citation-key: lan_adsorbml_2023
1690+
issued:
1691+
- year: 2023
1692+
month: 1
1693+
day: 4
1694+
number: arXiv:2211.16486
1695+
publisher: arXiv
1696+
source: arXiv.org
1697+
title: 'AdsorbML: Accelerating Adsorption Energy Calculations with Machine Learning'
1698+
title-short: AdsorbML
1699+
type: article
1700+
URL: http://arxiv.org/abs/2211.16486
1701+
16481702
- id: li_critical_2023
16491703
abstract: >-
16501704
Recent advances in machine learning (ML) methods have led to substantial

tests/test_models.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
import os
21
from glob import glob
32

43
import yaml
@@ -18,8 +17,9 @@ def test_model_dirs_have_metadata() -> None:
1817
"repo",
1918
)
2019
for model_dir in MODEL_DIRS:
21-
md_file = f"{model_dir}metadata.yml"
22-
assert os.path.isfile(md_file), f"Missing metadata file: {md_file}"
20+
md_files = glob(f"{model_dir}metadata*.yml")
21+
assert len(md_files) == 1, f"expected 1 metadata file, got {md_files=}"
22+
md_file = md_files[0]
2323

2424
# make sure all required keys are non-empty
2525
with open(md_file) as yml_file:

0 commit comments

Comments
 (0)