|
39 | 39 | )
|
40 | 40 | df = pd.read_csv(data_path).set_index("material_id")
|
41 | 41 |
|
42 |
| - df["e_above_hull"] = df_hull.e_above_hull |
| 42 | + df["e_above_mp_hull"] = df_hull.e_above_mp_hull |
43 | 43 |
|
44 |
| - df = df.dropna(subset=["e_above_hull"]) |
| 44 | + df = df.dropna(subset=["e_above_mp_hull"]) |
45 | 45 |
|
46 | 46 | rare = "all"
|
47 | 47 |
|
|
52 | 52 | # )
|
53 | 53 | # df = df.query("~contains_rare_earths")
|
54 | 54 |
|
55 |
| - e_above_hull = df.e_above_hull.to_numpy().ravel() |
| 55 | + e_above_mp_hull = df.e_above_mp_hull.to_numpy().ravel() |
56 | 56 |
|
57 | 57 | # tar = df[tar_cols].to_numpy().ravel() - e_hull
|
58 | 58 | tar_f = df.filter(like="target").to_numpy().ravel()
|
59 | 59 |
|
60 | 60 | # mean = np.average(pred, axis=0) - e_hull
|
61 |
| - mean = df.filter(like="pred").T.mean(axis=0) - tar_f + e_above_hull |
| 61 | + mean = df.filter(like="pred").mean(axis=1) - tar_f + e_above_mp_hull |
62 | 62 |
|
63 | 63 | # epistemic_std = np.var(pred, axis=0, ddof=0)
|
64 | 64 |
|
|
85 | 85 | xticks = (-0.4, -0.2, 0, 0.2, 0.4)
|
86 | 86 | # yticks = (0, 300, 600, 900, 1200)
|
87 | 87 |
|
88 |
| - tp = len(e_above_hull[(e_above_hull <= thresh) & (mean <= thresh)]) |
89 |
| - fn = len(e_above_hull[(e_above_hull <= thresh) & (mean > thresh)]) |
| 88 | + tp = len(e_above_mp_hull[(e_above_mp_hull <= thresh) & (mean <= thresh)]) |
| 89 | + fn = len(e_above_mp_hull[(e_above_mp_hull <= thresh) & (mean > thresh)]) |
90 | 90 |
|
91 | 91 | pos = tp + fn
|
92 | 92 |
|
93 | 93 | sort = np.argsort(mean)
|
94 |
| - e_above_hull = e_above_hull[sort] |
| 94 | + e_above_mp_hull = e_above_mp_hull[sort] |
95 | 95 | mean = mean[sort]
|
96 | 96 |
|
97 | 97 | e_type = "pred"
|
98 |
| - tp = np.asarray((e_above_hull <= thresh) & (mean <= thresh)) |
99 |
| - fn = np.asarray((e_above_hull <= thresh) & (mean > thresh)) |
100 |
| - fp = np.asarray((e_above_hull > thresh) & (mean <= thresh)) |
101 |
| - tn = np.asarray((e_above_hull > thresh) & (mean > thresh)) |
| 98 | + tp = np.asarray((e_above_mp_hull <= thresh) & (mean <= thresh)) |
| 99 | + fn = np.asarray((e_above_mp_hull <= thresh) & (mean > thresh)) |
| 100 | + fp = np.asarray((e_above_mp_hull > thresh) & (mean <= thresh)) |
| 101 | + tn = np.asarray((e_above_mp_hull > thresh) & (mean > thresh)) |
102 | 102 | xlabel = r"$\Delta E_{Hull-Pred}$ / eV per atom"
|
103 | 103 |
|
104 | 104 | c_tp = np.cumsum(tp)
|
|
0 commit comments