|
47 | 47 | data_path = f"{ROOT}/data/2022-06-26-wbm-cses-and-initial-structures.json.gz"
|
48 | 48 |
|
49 | 49 | module_dir = os.path.dirname(__file__)
|
50 |
| -job_id = os.environ.get("SLURM_JOB_ID", "debug") |
51 |
| -job_array_id = int(os.environ.get("SLURM_ARRAY_TASK_ID", 0)) |
| 50 | +slurm_job_id = os.environ.get("SLURM_JOB_ID", "debug") |
| 51 | +slurm_array_task_id = int(os.environ.get("SLURM_ARRAY_TASK_ID", 0)) |
52 | 52 | # set large fallback job array size for fast testing/debugging
|
53 | 53 | job_array_size = int(os.environ.get("SLURM_ARRAY_TASK_COUNT", 10_000))
|
54 | 54 |
|
55 | 55 | print(f"Job started running {datetime.now():%Y-%m-%d@%H-%M}")
|
56 |
| -print(f"{job_id = }") |
57 |
| -print(f"{job_array_id = }") |
| 56 | +print(f"{slurm_job_id = }") |
| 57 | +print(f"{slurm_array_task_id = }") |
58 | 58 | print(f"{version('maml') = }")
|
59 | 59 | print(f"{version('megnet') = }")
|
60 | 60 |
|
61 | 61 | today = f"{datetime.now():%Y-%m-%d}"
|
62 | 62 | out_dir = f"{module_dir}/{today}-bowsr-megnet-wbm-{task_type}"
|
63 | 63 | os.makedirs(out_dir, exist_ok=True)
|
64 |
| -json_out_path = f"{out_dir}/{job_array_id}.json.gz" |
| 64 | +json_out_path = f"{out_dir}/{slurm_array_task_id}.json.gz" |
65 | 65 |
|
66 | 66 | if os.path.isfile(json_out_path):
|
67 | 67 | raise SystemExit(f"{json_out_path = } already exists, exciting early")
|
|
79 | 79 | run_params = dict(
|
80 | 80 | megnet_version=version("megnet"),
|
81 | 81 | maml_version=version("maml"),
|
82 |
| - job_id=job_id, |
83 |
| - job_array_id=job_array_id, |
| 82 | + slurm_job_id=slurm_job_id, |
| 83 | + slurm_array_task_id=slurm_array_task_id, |
84 | 84 | data_path=data_path,
|
85 | 85 | bayes_optim_kwargs=bayes_optim_kwargs,
|
86 | 86 | optimize_kwargs=optimize_kwargs,
|
|
93 | 93 | wandb.init(
|
94 | 94 | entity="janosh",
|
95 | 95 | project="matbench-discovery",
|
96 |
| - name=f"bowsr-megnet-wbm-{task_type}-{job_id}-{job_array_id}", |
| 96 | + name=f"bowsr-megnet-wbm-{task_type}-{slurm_job_id}-{slurm_array_task_id}", |
97 | 97 | config=run_params,
|
98 | 98 | )
|
99 | 99 |
|
|
102 | 102 | print(f"Loading from {data_path=}")
|
103 | 103 | df_wbm = pd.read_json(data_path).set_index("material_id")
|
104 | 104 |
|
105 |
| -df_this_job = np.array_split(df_wbm, job_array_size + 1)[job_array_id] |
| 105 | +df_this_job = np.array_split(df_wbm, job_array_size + 1)[slurm_array_task_id] |
106 | 106 |
|
107 | 107 |
|
108 | 108 | # %%
|
|
0 commit comments