-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathParameterizedSharedAppDomainAlgorithm.py
70 lines (58 loc) · 3.08 KB
/
ParameterizedSharedAppDomainAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
AddReference("Jtc.Optimization.LeanOptimizer.Example")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Parameters import *
from Jtc.Optimization.LeanOptimizer.Example import InstancedConfig
### <summary>
### Demonstration of the parameter system of QuantConnect. Using parameters you can pass the values required into C# algorithms for optimization.
### </summary>
### <meta name="tag" content="optimization" />
### <meta name="tag" content="using quantconnect" />
class ParameterizedSharedAppDomainAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2013, 10, 8) #Set Start Date
self.SetEndDate(2013, 10, 10) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY")
# Receive parameters from the Job
ema_fast = self.GetParameter("fast")
ema_slow = self.GetParameter("slow")
self.take = float(self.GetParameter("take"))
# The values 100 and 200 are just default values that only used if the parameters do not exist
fast_period = 100 if ema_fast is None else int(ema_fast)
slow_period = 200 if ema_slow is None else int(ema_slow)
self.fast = self.EMA("SPY", fast_period)
self.slow = self.EMA("SPY", slow_period)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.'''
# wait for our indicators to ready
if not self.fast.IsReady or not self.slow.IsReady:
return
fast = self.fast.Current.Value
slow = self.slow.Current.Value
#self.Log("fast:" + str(fast) + "slow:" + str(slow)+ "take:" + str(self.take))
if fast > slow * 1.001:
self.SetHoldings("SPY", 1)
elif self.Portfolio.HoldStock and self.Portfolio["SPY"].UnrealizedProfitPercent > self.take:
self.Liquidate("SPY")