Skip to content

Commit 89b7105

Browse files
committed
update
1 parent b6dacb2 commit 89b7105

File tree

6 files changed

+33
-14
lines changed

6 files changed

+33
-14
lines changed

.gitignore

+4
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
*.pyc
2+
data/cifar10
3+
init_weights/vgg_cnn_f_rmlast.h5
4+
experiments

README.md

+13-1
Original file line numberDiff line numberDiff line change
@@ -8,17 +8,29 @@ Learning-based hash has been widely used for large-scale similarity retrieval du
88

99

1010
## Prerequisites
11-
* python3.5
11+
* python2.7
1212
* keras2.3.0
1313
* tensorflow1.13.1
14+
* scikit-learn0.20.4
1415

1516
Use the following command to install all requirements:
1617
```bash
1718
$ pip install -r requirements.txt
1819
```
1920

21+
If you want to evaluate the image retrieval performance, you need matlab as well.
22+
23+
2024
## Usage
2125

26+
### Preparing data
27+
28+
### Training
29+
30+
### Testing
31+
32+
### Evaluation (matlab required)
33+
2234

2335
## Citation
2436
Please cite following paper if these codes help your research:

init_weights/.place_holder

Whitespace-only changes.

requirements.txt

+1
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,3 @@
11
tensorflow-gpu==1.13.1
22
keras==2.3.0
3+
scikit-learn==0.20.4

settings.cfg

+12-12
Original file line numberDiff line numberDiff line change
@@ -1,46 +1,46 @@
11
[16bits.model]
22
k = 1.0
3-
save_period = 50
4-
max_epochs = 250
3+
save_period = 100
4+
max_epochs = 200
55
patience = 50
66

77
[16bits.optim]
88
optimizer = Adam
99
lr = 0.00001
10-
decay = 1e-6
10+
decay = 1e-4
1111

1212

1313
[24bits.model]
1414
k = 1.0
15-
save_period = 50
16-
max_epochs = 250
15+
save_period = 100
16+
max_epochs = 200
1717
patience = 50
1818

1919
[24bits.optim]
2020
optimizer = Adam
2121
lr = 0.00001
22-
decay = 1e-6
22+
decay = 1e-4
2323

2424

2525
[32bits.model]
2626
k = 1.0
27-
save_period = 50
28-
max_epochs = 250
27+
save_period = 100
28+
max_epochs = 200
2929
patience = 50
3030

3131
[32bits.optim]
3232
optimizer = Adam
3333
lr = 0.00001
34-
decay = 1e-6
34+
decay = 1e-4
3535

3636

3737
[48bits.model]
3838
k = 1.0
39-
save_period = 50
40-
max_epochs = 250
39+
save_period = 100
40+
max_epochs = 200
4141
patience = 50
4242

4343
[48bits.optim]
4444
optimizer = Adam
4545
lr = 0.00001
46-
decay = 1e-6
46+
decay = 1e-4

train.py

+3-1
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@
55
import importlib
66
import tensorflow as tf
77
import keras.backend as K
8+
from pathlib2 import Path
89
from keras import optimizers
910
from keras.models import load_model
1011
from keras.engine import Model
@@ -46,7 +47,8 @@ def run_train(args, optim_args):
4647

4748
## Initial preparation
4849
model_dir = os.path.join(args.exp_dir, 'models', args.config_opt)
49-
os.makedirs(model_dir, exist_ok=True)
50+
# os.makedirs(model_dir, exist_ok=True)
51+
Path(model_dir).mkdir(parents=True, exist_ok=True)
5052
model_check_point = ModelCheckpoint(os.path.join(model_dir, '{epoch:03d}.h5'),
5153
period=args.save_period)
5254
csv_logger = CSVLogger(os.path.join(model_dir, 'log.csv'))

0 commit comments

Comments
 (0)