forked from googleapis/python-aiplatform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_training_pipeline_forecasting_seq2seq_sample.py
98 lines (87 loc) · 3.87 KB
/
create_training_pipeline_forecasting_seq2seq_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional
from google.cloud import aiplatform
# [START aiplatform_sdk_create_training_pipeline_forecasting_seq2seq_sample]
def create_training_pipeline_forecasting_seq2seq_sample(
project: str,
display_name: str,
dataset_id: str,
location: str = "us-central1",
model_display_name: str = "my_model",
target_column: str = "target_column",
time_column: str = "date",
time_series_identifier_column: str = "time_series_id",
unavailable_at_forecast_columns: List[str] = [],
available_at_forecast_columns: List[str] = [],
forecast_horizon: int = 1,
data_granularity_unit: str = "week",
data_granularity_count: int = 1,
training_fraction_split: float = 0.8,
validation_fraction_split: float = 0.1,
test_fraction_split: float = 0.1,
budget_milli_node_hours: int = 8000,
timestamp_split_column_name: str = "timestamp_split",
weight_column: str = "weight",
time_series_attribute_columns: List[str] = [],
context_window: int = 0,
export_evaluated_data_items: bool = False,
export_evaluated_data_items_bigquery_destination_uri: Optional[str] = None,
export_evaluated_data_items_override_destination: bool = False,
quantiles: Optional[List[float]] = None,
validation_options: Optional[str] = None,
predefined_split_column_name: Optional[str] = None,
sync: bool = True,
):
aiplatform.init(project=project, location=location)
# Create training job
forecasting_seq2seq_job = aiplatform.SequenceToSequencePlusForecastingTrainingJob(
display_name=display_name, optimization_objective="minimize-rmse"
)
# Retrieve existing dataset
dataset = aiplatform.TimeSeriesDataset(dataset_id)
# Run training job
model = forecasting_seq2seq_job.run(
dataset=dataset,
target_column=target_column,
time_column=time_column,
time_series_identifier_column=time_series_identifier_column,
unavailable_at_forecast_columns=unavailable_at_forecast_columns,
available_at_forecast_columns=available_at_forecast_columns,
forecast_horizon=forecast_horizon,
data_granularity_unit=data_granularity_unit,
data_granularity_count=data_granularity_count,
training_fraction_split=training_fraction_split,
validation_fraction_split=validation_fraction_split,
test_fraction_split=test_fraction_split,
predefined_split_column_name=predefined_split_column_name,
timestamp_split_column_name=timestamp_split_column_name,
weight_column=weight_column,
time_series_attribute_columns=time_series_attribute_columns,
context_window=context_window,
export_evaluated_data_items=export_evaluated_data_items,
export_evaluated_data_items_bigquery_destination_uri=export_evaluated_data_items_bigquery_destination_uri,
export_evaluated_data_items_override_destination=export_evaluated_data_items_override_destination,
quantiles=quantiles,
validation_options=validation_options,
budget_milli_node_hours=budget_milli_node_hours,
model_display_name=model_display_name,
sync=sync,
)
model.wait()
print(model.display_name)
print(model.resource_name)
print(model.uri)
return model
# [END aiplatform_sdk_create_training_pipeline_forecasting_seq2seq_sample]