1
1
## Fault detection based on support vector data description (SVDD)
2
2
3
- ---------------------------------------------------------
3
+ -------------------------------------------------------------------
4
+ Updated on 28 May 2019
5
+ 1 . Added descriptions for the calculation of the radius
6
+ 2 . Added descriptions for the calculation of the distance
7
+ from the testing sample to the center of the sphere
8
+ -------------------------------------------------------------------
9
+
10
+ -------------------------------------------------------------------
4
11
Updated on 24 May 2019
5
12
1 . Fixed some function descriptions
6
13
2 . Added support for some common kernel functions
7
- ---------------------------------------------------------
14
+ -------------------------------------------------------------------
8
15
9
16
## demo
10
17
```
@@ -27,7 +34,8 @@ load ('.\data\Y.mat')
27
34
28
35
% Set parameters
29
36
C = 0.2; % trade-off parameter
30
- ker = struct('type','gauss','width',6);
37
+ s = 6; % kernel width
38
+ ker = struct('type','gauss','width',s);
31
39
32
40
% Train SVDD hypersphere
33
41
model = svdd_train(X_s,C,ker);
@@ -36,7 +44,7 @@ model = svdd_train(X_s,C,ker);
36
44
d = svdd_test(model,Y_s);
37
45
38
46
% Plot the results
39
- plotResult(model.threshold ,d)
47
+ plotResult(model.R ,d)
40
48
41
49
```
42
50
0 commit comments