1
1
<p align =" center " >
2
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-3D .png " >
2
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/demo_ .png " >
3
3
</p >
4
4
5
-
6
- <p align =" center " >
7
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/demo-3.png " >
8
- </p >
9
-
10
-
11
5
<h3 align =" center " >Support Vector Data Description (SVDD)</h3 >
12
6
13
7
<p align =" center " >MATLAB Code for abnormal detection or fault detection using SVDD</p >
@@ -60,8 +54,8 @@ A class named ***DataSet*** is defined to generate and partition the 2D or 3D ba
60
54
[trainData, trainLabel, testData, testLabel] = DataSet.partition(data, label, 'type', 'hybrid');
61
55
```
62
56
<p align =" center " >
63
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/banana-2D .png " >
64
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/banana-3D .png " >
57
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/banana-2D_ .png " >
58
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/banana-3D_ .png " >
65
59
</p >
66
60
67
61
### 02. Kernel funcions
@@ -190,7 +184,7 @@ svplot = SvddVisualization();
190
184
svplot.ROC(svdd);
191
185
```
192
186
<p align =" center " >
193
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/ROC-3D .png " >
187
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/ROC-3D_ .png " >
194
188
</p >
195
189
196
190
The decision boundaries (only supported for 2D/3D dataset) are
@@ -200,28 +194,28 @@ svplot = SvddVisualization();
200
194
svplot.boundary(svdd);
201
195
```
202
196
<p align =" center " >
203
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-2D .png " >
197
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-2D_ .png " >
204
198
</p >
205
199
206
200
<p align =" center " >
207
- <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-3D .png" >
201
+ <img src =" https ://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-3D_ .png" >
208
202
</p >
209
203
210
204
The distance between the test data and the hypersphere is
211
205
```
212
206
svplot.distance(svdd, results);
213
207
```
214
208
<p align =" center " >
215
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/distance-3D .png " >
209
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/distance-3D_ .png " >
216
210
</p >
217
211
218
212
For the test results, the test data and decision boundary (only supported for 2D/3D dataset) are
219
213
```
220
214
svplot.testDataWithBoundary(svdd, results);
221
215
```
222
216
<p align =" center " >
223
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-tets-2D .png " >
224
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-tets-3D .png " >
217
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-tets-2D_ .png " >
218
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/boundary-tets-3D_ .png " >
225
219
</p >
226
220
227
221
### 05. Parameter Optimization
@@ -247,8 +241,8 @@ svddParameter = struct('cost', cost,...
247
241
248
242
The visualization of parameter optimization is
249
243
<p align =" center " >
250
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/bayesopt .png " >
251
- <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/bayesopt-1 .png " >
244
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/bayesopt_1_ .png " >
245
+ <img src =" http://github-files-qiu.oss-cn-beijing.aliyuncs.com/SVDD-MATLAB/bayesopt_2_ .png " >
252
246
</p >
253
247
254
248
** Notice**
0 commit comments