-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathflux_denoise.py
872 lines (769 loc) · 40.4 KB
/
flux_denoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
from contextlib import ExitStack
from typing import Callable, Iterator, Optional, Tuple, Union
import einops
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as tv_transforms
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
FluxFillConditioningField,
FluxReduxConditioningField,
ImageField,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.model import ControlLoRAField, LoRAField, TransformerField, VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.sampling_utils import (
clip_timestep_schedule_fractional,
generate_img_ids,
get_noise,
get_schedule,
pack,
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxReduxConditioning, FluxTextConditioning
from invokeai.backend.model_manager.config import ModelFormat, ModelVariantType
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_denoise",
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.3.0",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a FLUX transformer model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
)
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.denoise_mask,
input=Input.Connection,
)
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
add_noise: bool = InputField(default=True, description="Add noise based on denoising start.")
transformer: TransformerField = InputField(
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
)
control_lora: Optional[ControlLoRAField] = InputField(
description=FieldDescriptions.control_lora_model, input=Input.Connection, title="Control LoRA", default=None
)
positive_text_conditioning: FluxConditioningField | list[FluxConditioningField] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_text_conditioning: FluxConditioningField | list[FluxConditioningField] | None = InputField(
default=None,
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
)
redux_conditioning: FluxReduxConditioningField | list[FluxReduxConditioningField] | None = InputField(
default=None,
description="FLUX Redux conditioning tensor.",
input=Input.Connection,
)
fill_conditioning: FluxFillConditioningField | None = InputField(
default=None,
description="FLUX Fill conditioning.",
input=Input.Connection,
)
cfg_scale: float | list[float] = InputField(default=1.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
cfg_scale_start_step: int = InputField(
default=0,
title="CFG Scale Start Step",
description="Index of the first step to apply cfg_scale. Negative indices count backwards from the "
+ "the last step (e.g. a value of -1 refers to the final step).",
)
cfg_scale_end_step: int = InputField(
default=-1,
title="CFG Scale End Step",
description="Index of the last step to apply cfg_scale. Negative indices count backwards from the "
+ "last step (e.g. a value of -1 refers to the final step).",
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(
default=4, description="Number of diffusion steps. Recommended values are schnell: 4, dev: 50."
)
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
control: FluxControlNetField | list[FluxControlNetField] | None = InputField(
default=None, input=Input.Connection, description="ControlNet models."
)
controlnet_vae: VAEField | None = InputField(
default=None,
description=FieldDescriptions.vae,
input=Input.Connection,
)
ip_adapter: IPAdapterField | list[IPAdapterField] | None = InputField(
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=TorchDevice.choose_torch_device(), dtype=inference_dtype)
# Prepare input noise.
noise = get_noise(
num_samples=1,
height=self.height,
width=self.width,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
seed=self.seed,
)
b, _c, latent_h, latent_w = noise.shape
packed_h = latent_h // 2
packed_w = latent_w // 2
# Load the conditioning data.
pos_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.positive_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
neg_text_conditionings: list[FluxTextConditioning] | None = None
if self.negative_text_conditioning is not None:
neg_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.negative_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
redux_conditionings: list[FluxReduxConditioning] = self._load_redux_conditioning(
context=context,
redux_cond_field=self.redux_conditioning,
packed_height=packed_h,
packed_width=packed_w,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
pos_regional_prompting_extension = RegionalPromptingExtension.from_text_conditioning(
text_conditioning=pos_text_conditionings,
redux_conditioning=redux_conditionings,
img_seq_len=packed_h * packed_w,
)
neg_regional_prompting_extension = (
RegionalPromptingExtension.from_text_conditioning(
text_conditioning=neg_text_conditionings, redux_conditioning=[], img_seq_len=packed_h * packed_w
)
if neg_text_conditionings
else None
)
transformer_config = context.models.get_config(self.transformer.transformer)
is_schnell = "schnell" in getattr(transformer_config, "config_path", "")
# Calculate the timestep schedule.
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=packed_h * packed_w,
shift=not is_schnell,
)
# Clip the timesteps schedule based on denoising_start and denoising_end.
timesteps = clip_timestep_schedule_fractional(timesteps, self.denoising_start, self.denoising_end)
# Prepare input latent image.
if init_latents is not None:
# If init_latents is provided, we are doing image-to-image.
if is_schnell:
context.logger.warning(
"Running image-to-image with a FLUX schnell model. This is not recommended. The results are likely "
"to be poor. Consider using a FLUX dev model instead."
)
if self.add_noise:
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
x = init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
x = noise
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
# denoising steps.
if len(timesteps) <= 1:
return x
if is_schnell and self.control_lora:
raise ValueError("Control LoRAs cannot be used with FLUX Schnell")
# Prepare the extra image conditioning tensor (img_cond) for either FLUX structural control or FLUX Fill.
img_cond: torch.Tensor | None = None
is_flux_fill = transformer_config.variant == ModelVariantType.Inpaint # type: ignore
if is_flux_fill:
img_cond = self._prep_flux_fill_img_cond(
context, device=TorchDevice.choose_torch_device(), dtype=inference_dtype
)
else:
if self.fill_conditioning is not None:
raise ValueError("fill_conditioning was provided, but the model is not a FLUX Fill model.")
if self.control_lora is not None:
img_cond = self._prep_structural_control_img_cond(context)
inpaint_mask = self._prep_inpaint_mask(context, x)
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
noise = pack(noise)
x = pack(x)
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len, packed_h, and
# packed_w correctly.
assert packed_h * packed_w == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
)
# Compute the IP-Adapter image prompt clip embeddings.
# We do this before loading other models to minimize peak memory.
# TODO(ryand): We should really do this in a separate invocation to benefit from caching.
ip_adapter_fields = self._normalize_ip_adapter_fields()
pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds = self._prep_ip_adapter_image_prompt_clip_embeds(
ip_adapter_fields, context, device=x.device
)
cfg_scale = self.prep_cfg_scale(
cfg_scale=self.cfg_scale,
timesteps=timesteps,
cfg_scale_start_step=self.cfg_scale_start_step,
cfg_scale_end_step=self.cfg_scale_end_step,
)
with ExitStack() as exit_stack:
# Prepare ControlNet extensions.
# Note: We do this before loading the transformer model to minimize peak memory (see implementation).
controlnet_extensions = self._prep_controlnet_extensions(
context=context,
exit_stack=exit_stack,
latent_height=latent_h,
latent_width=latent_w,
dtype=inference_dtype,
device=x.device,
)
# Load the transformer model.
(cached_weights, transformer) = exit_stack.enter_context(
context.models.load(self.transformer.transformer).model_on_device()
)
assert isinstance(transformer, Flux)
config = transformer_config
assert config is not None
# Determine if the model is quantized.
# If the model is quantized, then we need to apply the LoRA weights as sidecar layers. This results in
# slower inference than direct patching, but is agnostic to the quantization format.
if config.format in [ModelFormat.Checkpoint]:
model_is_quantized = False
elif config.format in [
ModelFormat.BnbQuantizedLlmInt8b,
ModelFormat.BnbQuantizednf4b,
ModelFormat.GGUFQuantized,
]:
model_is_quantized = True
else:
raise ValueError(f"Unsupported model format: {config.format}")
# Apply LoRA models to the transformer.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
exit_stack.enter_context(
LayerPatcher.apply_smart_model_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
dtype=inference_dtype,
cached_weights=cached_weights,
force_sidecar_patching=model_is_quantized,
)
)
# Prepare IP-Adapter extensions.
pos_ip_adapter_extensions, neg_ip_adapter_extensions = self._prep_ip_adapter_extensions(
pos_image_prompt_clip_embeds=pos_image_prompt_clip_embeds,
neg_image_prompt_clip_embeds=neg_image_prompt_clip_embeds,
ip_adapter_fields=ip_adapter_fields,
context=context,
exit_stack=exit_stack,
dtype=inference_dtype,
)
x = denoise(
model=transformer,
img=x,
img_ids=img_ids,
pos_regional_prompting_extension=pos_regional_prompting_extension,
neg_regional_prompting_extension=neg_regional_prompting_extension,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
cfg_scale=cfg_scale,
inpaint_extension=inpaint_extension,
controlnet_extensions=controlnet_extensions,
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
img_cond=img_cond,
)
x = unpack(x.float(), self.height, self.width)
return x
def _load_text_conditioning(
self,
context: InvocationContext,
cond_field: FluxConditioningField | list[FluxConditioningField],
packed_height: int,
packed_width: int,
dtype: torch.dtype,
device: torch.device,
) -> list[FluxTextConditioning]:
"""Load text conditioning data from a FluxConditioningField or a list of FluxConditioningFields."""
# Normalize to a list of FluxConditioningFields.
cond_list = [cond_field] if isinstance(cond_field, FluxConditioningField) else cond_field
text_conditionings: list[FluxTextConditioning] = []
for cond_field in cond_list:
# Load the text embeddings.
cond_data = context.conditioning.load(cond_field.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype, device=device)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if cond_field.mask is not None:
mask = context.tensors.load(cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
text_conditionings.append(FluxTextConditioning(t5_embeddings, clip_embeddings, mask))
return text_conditionings
def _load_redux_conditioning(
self,
context: InvocationContext,
redux_cond_field: FluxReduxConditioningField | list[FluxReduxConditioningField] | None,
packed_height: int,
packed_width: int,
device: torch.device,
dtype: torch.dtype,
) -> list[FluxReduxConditioning]:
# Normalize to a list of FluxReduxConditioningFields.
if redux_cond_field is None:
return []
redux_cond_list = (
[redux_cond_field] if isinstance(redux_cond_field, FluxReduxConditioningField) else redux_cond_field
)
redux_conditionings: list[FluxReduxConditioning] = []
for redux_cond_field in redux_cond_list:
# Load the Redux conditioning tensor.
redux_cond_data = context.tensors.load(redux_cond_field.conditioning.tensor_name)
redux_cond_data.to(device=device, dtype=dtype)
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if redux_cond_field.mask is not None:
mask = context.tensors.load(redux_cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
redux_conditionings.append(FluxReduxConditioning(redux_embeddings=redux_cond_data, mask=mask))
return redux_conditionings
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int
) -> list[float]:
"""Prepare the cfg_scale schedule.
- Clips the cfg_scale schedule based on cfg_scale_start_step and cfg_scale_end_step.
- If cfg_scale is a list, then it is assumed to be a schedule and is returned as-is.
- If cfg_scale is a scalar, then a linear schedule is created from cfg_scale_start_step to cfg_scale_end_step.
"""
# num_steps is the number of denoising steps, which is one less than the number of timesteps.
num_steps = len(timesteps) - 1
# Normalize cfg_scale to a list if it is a scalar.
cfg_scale_list: list[float]
if isinstance(cfg_scale, float):
cfg_scale_list = [cfg_scale] * num_steps
elif isinstance(cfg_scale, list):
cfg_scale_list = cfg_scale
else:
raise ValueError(f"Unsupported cfg_scale type: {type(cfg_scale)}")
assert len(cfg_scale_list) == num_steps
# Handle negative indices for cfg_scale_start_step and cfg_scale_end_step.
start_step_index = cfg_scale_start_step
if start_step_index < 0:
start_step_index = num_steps + start_step_index
end_step_index = cfg_scale_end_step
if end_step_index < 0:
end_step_index = num_steps + end_step_index
# Validate the start and end step indices.
if not (0 <= start_step_index < num_steps):
raise ValueError(f"Invalid cfg_scale_start_step. Out of range: {cfg_scale_start_step}.")
if not (0 <= end_step_index < num_steps):
raise ValueError(f"Invalid cfg_scale_end_step. Out of range: {cfg_scale_end_step}.")
if start_step_index > end_step_index:
raise ValueError(
f"cfg_scale_start_step ({cfg_scale_start_step}) must be before cfg_scale_end_step "
+ f"({cfg_scale_end_step})."
)
# Set values outside the start and end step indices to 1.0. This is equivalent to disabling cfg_scale for those
# steps.
clipped_cfg_scale = [1.0] * num_steps
clipped_cfg_scale[start_step_index : end_step_index + 1] = cfg_scale_list[start_step_index : end_step_index + 1]
return clipped_cfg_scale
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
- Loads the mask
- Resizes if necessary
- Casts to same device/dtype as latents
- Expands mask to the same shape as latents so that they line up after 'packing'
Args:
context (InvocationContext): The invocation context, for loading the inpaint mask.
latents (torch.Tensor): A latent image tensor. In 'unpacked' format. Used to determine the target shape,
device, and dtype for the inpaint mask.
Returns:
torch.Tensor | None: Inpaint mask. Values of 0.0 represent the regions to be fully denoised, and 1.0
represent the regions to be preserved.
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
# The input denoise_mask contains values in [0, 1], where 0.0 represents the regions to be fully denoised, and
# 1.0 represents the regions to be preserved.
# We invert the mask so that the regions to be preserved are 0.0 and the regions to be denoised are 1.0.
mask = 1.0 - mask
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
# Expand the inpaint mask to the same shape as `latents` so that when we 'pack' `mask` it lines up with
# `latents`.
return mask.expand_as(latents)
def _prep_controlnet_extensions(
self,
context: InvocationContext,
exit_stack: ExitStack,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
device: torch.device,
) -> list[XLabsControlNetExtension | InstantXControlNetExtension]:
# Normalize the controlnet input to list[ControlField].
controlnets: list[FluxControlNetField]
if self.control is None:
controlnets = []
elif isinstance(self.control, FluxControlNetField):
controlnets = [self.control]
elif isinstance(self.control, list):
controlnets = self.control
else:
raise ValueError(f"Unsupported controlnet type: {type(self.control)}")
# TODO(ryand): Add a field to the model config so that we can distinguish between XLabs and InstantX ControlNets
# before loading the models. Then make sure that all VAE encoding is done before loading the ControlNets to
# minimize peak memory.
# Calculate the controlnet conditioning tensors.
# We do this before loading the ControlNet models because it may require running the VAE, and we are trying to
# keep peak memory down.
controlnet_conds: list[torch.Tensor] = []
for controlnet in controlnets:
image = context.images.get_pil(controlnet.image.image_name)
# HACK(ryand): We have to load the ControlNet model to determine whether the VAE needs to be run. We really
# shouldn't have to load the model here. There's a risk that the model will be dropped from the model cache
# before we load it into VRAM and thus we'll have to load it again (context:
# https://github.com/invoke-ai/InvokeAI/issues/7513).
controlnet_model = context.models.load(controlnet.control_model)
if isinstance(controlnet_model.model, InstantXControlNetFlux):
if self.controlnet_vae is None:
raise ValueError("A ControlNet VAE is required when using an InstantX FLUX ControlNet.")
vae_info = context.models.load(self.controlnet_vae.vae)
controlnet_conds.append(
InstantXControlNetExtension.prepare_controlnet_cond(
controlnet_image=image,
vae_info=vae_info,
latent_height=latent_height,
latent_width=latent_width,
dtype=dtype,
device=device,
resize_mode=controlnet.resize_mode,
)
)
elif isinstance(controlnet_model.model, XLabsControlNetFlux):
controlnet_conds.append(
XLabsControlNetExtension.prepare_controlnet_cond(
controlnet_image=image,
latent_height=latent_height,
latent_width=latent_width,
dtype=dtype,
device=device,
resize_mode=controlnet.resize_mode,
)
)
# Finally, load the ControlNet models and initialize the ControlNet extensions.
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension] = []
for controlnet, controlnet_cond in zip(controlnets, controlnet_conds, strict=True):
model = exit_stack.enter_context(context.models.load(controlnet.control_model))
if isinstance(model, XLabsControlNetFlux):
controlnet_extensions.append(
XLabsControlNetExtension(
model=model,
controlnet_cond=controlnet_cond,
weight=controlnet.control_weight,
begin_step_percent=controlnet.begin_step_percent,
end_step_percent=controlnet.end_step_percent,
)
)
elif isinstance(model, InstantXControlNetFlux):
instantx_control_mode: torch.Tensor | None = None
if controlnet.instantx_control_mode is not None and controlnet.instantx_control_mode >= 0:
instantx_control_mode = torch.tensor(controlnet.instantx_control_mode, dtype=torch.long)
instantx_control_mode = instantx_control_mode.reshape([-1, 1])
controlnet_extensions.append(
InstantXControlNetExtension(
model=model,
controlnet_cond=controlnet_cond,
instantx_control_mode=instantx_control_mode,
weight=controlnet.control_weight,
begin_step_percent=controlnet.begin_step_percent,
end_step_percent=controlnet.end_step_percent,
)
)
else:
raise ValueError(f"Unsupported ControlNet model type: {type(model)}")
return controlnet_extensions
def _prep_structural_control_img_cond(self, context: InvocationContext) -> torch.Tensor | None:
if self.control_lora is None:
return None
if not self.controlnet_vae:
raise ValueError("controlnet_vae must be set when using a FLUX Control LoRA.")
# Load the conditioning image and resize it to the target image size.
cond_img = context.images.get_pil(self.control_lora.img.image_name)
cond_img = cond_img.convert("RGB")
cond_img = cond_img.resize((self.width, self.height), Image.Resampling.BICUBIC)
cond_img = np.array(cond_img)
# Normalize the conditioning image to the range [-1, 1].
# This normalization is based on the original implementations here:
# https://github.com/black-forest-labs/flux/blob/805da8571a0b49b6d4043950bd266a65328c243b/src/flux/modules/image_embedders.py#L34
# https://github.com/black-forest-labs/flux/blob/805da8571a0b49b6d4043950bd266a65328c243b/src/flux/modules/image_embedders.py#L60
img_cond = torch.from_numpy(cond_img).float() / 127.5 - 1.0
img_cond = einops.rearrange(img_cond, "h w c -> 1 c h w")
vae_info = context.models.load(self.controlnet_vae.vae)
img_cond = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=img_cond)
return pack(img_cond)
def _prep_flux_fill_img_cond(
self, context: InvocationContext, device: torch.device, dtype: torch.dtype
) -> torch.Tensor:
"""Prepare the FLUX Fill conditioning. This method should be called iff the model is a FLUX Fill model.
This logic is based on:
https://github.com/black-forest-labs/flux/blob/716724eb276d94397be99710a0a54d352664e23b/src/flux/sampling.py#L107-L157
"""
# Validate inputs.
if self.fill_conditioning is None:
raise ValueError("A FLUX Fill model is being used without fill_conditioning.")
# TODO(ryand): We should probable rename controlnet_vae. It's used for more than just ControlNets.
if self.controlnet_vae is None:
raise ValueError("A FLUX Fill model is being used without controlnet_vae.")
if self.control_lora is not None:
raise ValueError(
"A FLUX Fill model is being used, but a control_lora was provided. Control LoRAs are not compatible with FLUX Fill models."
)
# Log input warnings related to FLUX Fill usage.
if self.denoise_mask is not None:
context.logger.warning(
"Both fill_conditioning and a denoise_mask were provided. You probably meant to use one or the other."
)
if self.guidance < 25.0:
context.logger.warning("A guidance value of ~30.0 is recommended for FLUX Fill models.")
# Load the conditioning image and resize it to the target image size.
cond_img = context.images.get_pil(self.fill_conditioning.image.image_name, mode="RGB")
cond_img = cond_img.resize((self.width, self.height), Image.Resampling.BICUBIC)
cond_img = np.array(cond_img)
cond_img = torch.from_numpy(cond_img).float() / 127.5 - 1.0
cond_img = einops.rearrange(cond_img, "h w c -> 1 c h w")
cond_img = cond_img.to(device=device, dtype=dtype)
# Load the mask and resize it to the target image size.
mask = context.tensors.load(self.fill_conditioning.mask.tensor_name)
# We expect mask to be a bool tensor with shape [1, H, W].
assert mask.dtype == torch.bool
assert mask.dim() == 3
assert mask.shape[0] == 1
mask = tv_resize(mask, size=[self.height, self.width], interpolation=tv_transforms.InterpolationMode.NEAREST)
mask = mask.to(device=device, dtype=dtype)
mask = einops.rearrange(mask, "1 h w -> 1 1 h w")
# Prepare image conditioning.
cond_img = cond_img * (1 - mask)
vae_info = context.models.load(self.controlnet_vae.vae)
cond_img = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=cond_img)
cond_img = pack(cond_img)
# Prepare mask conditioning.
mask = mask[:, 0, :, :]
# Rearrange mask to a 16-channel representation that matches the shape of the VAE-encoded latent space.
mask = einops.rearrange(mask, "b (h ph) (w pw) -> b (ph pw) h w", ph=8, pw=8)
mask = pack(mask)
# Merge image and mask conditioning.
img_cond = torch.cat((cond_img, mask), dim=-1)
return img_cond
def _normalize_ip_adapter_fields(self) -> list[IPAdapterField]:
if self.ip_adapter is None:
return []
elif isinstance(self.ip_adapter, IPAdapterField):
return [self.ip_adapter]
elif isinstance(self.ip_adapter, list):
return self.ip_adapter
else:
raise ValueError(f"Unsupported IP-Adapter type: {type(self.ip_adapter)}")
def _prep_ip_adapter_image_prompt_clip_embeds(
self,
ip_adapter_fields: list[IPAdapterField],
context: InvocationContext,
device: torch.device,
) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
clip_image_processor = CLIPImageProcessor()
pos_image_prompt_clip_embeds: list[torch.Tensor] = []
neg_image_prompt_clip_embeds: list[torch.Tensor] = []
for ip_adapter_field in ip_adapter_fields:
# `ip_adapter_field.image` could be a list or a single ImageField. Normalize to a list here.
ipa_image_fields: list[ImageField]
if isinstance(ip_adapter_field.image, ImageField):
ipa_image_fields = [ip_adapter_field.image]
elif isinstance(ip_adapter_field.image, list):
ipa_image_fields = ip_adapter_field.image
else:
raise ValueError(f"Unsupported IP-Adapter image type: {type(ip_adapter_field.image)}")
if len(ipa_image_fields) != 1:
raise ValueError(
f"FLUX IP-Adapter only supports a single image prompt (received {len(ipa_image_fields)})."
)
ipa_images = [context.images.get_pil(image.image_name, mode="RGB") for image in ipa_image_fields]
pos_images: list[npt.NDArray[np.uint8]] = []
neg_images: list[npt.NDArray[np.uint8]] = []
for ipa_image in ipa_images:
assert ipa_image.mode == "RGB"
pos_image = np.array(ipa_image)
# We use a black image as the negative image prompt for parity with
# https://github.com/XLabs-AI/x-flux-comfyui/blob/45c834727dd2141aebc505ae4b01f193a8414e38/nodes.py#L592-L593
# An alternative scheme would be to apply zeros_like() after calling the clip_image_processor.
neg_image = np.zeros_like(pos_image)
pos_images.append(pos_image)
neg_images.append(neg_image)
with context.models.load(ip_adapter_field.image_encoder_model) as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
clip_image: torch.Tensor = clip_image_processor(images=pos_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=device, dtype=image_encoder_model.dtype)
pos_clip_image_embeds = image_encoder_model(clip_image).image_embeds
clip_image = clip_image_processor(images=neg_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=device, dtype=image_encoder_model.dtype)
neg_clip_image_embeds = image_encoder_model(clip_image).image_embeds
pos_image_prompt_clip_embeds.append(pos_clip_image_embeds)
neg_image_prompt_clip_embeds.append(neg_clip_image_embeds)
return pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds
def _prep_ip_adapter_extensions(
self,
ip_adapter_fields: list[IPAdapterField],
pos_image_prompt_clip_embeds: list[torch.Tensor],
neg_image_prompt_clip_embeds: list[torch.Tensor],
context: InvocationContext,
exit_stack: ExitStack,
dtype: torch.dtype,
) -> tuple[list[XLabsIPAdapterExtension], list[XLabsIPAdapterExtension]]:
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension] = []
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension] = []
for ip_adapter_field, pos_image_prompt_clip_embed, neg_image_prompt_clip_embed in zip(
ip_adapter_fields, pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds, strict=True
):
ip_adapter_model = exit_stack.enter_context(context.models.load(ip_adapter_field.ip_adapter_model))
assert isinstance(ip_adapter_model, XlabsIpAdapterFlux)
ip_adapter_model = ip_adapter_model.to(dtype=dtype)
if ip_adapter_field.mask is not None:
raise ValueError("IP-Adapter masks are not yet supported in Flux.")
ip_adapter_extension = XLabsIPAdapterExtension(
model=ip_adapter_model,
image_prompt_clip_embed=pos_image_prompt_clip_embed,
weight=ip_adapter_field.weight,
begin_step_percent=ip_adapter_field.begin_step_percent,
end_step_percent=ip_adapter_field.end_step_percent,
)
ip_adapter_extension.run_image_proj(dtype=dtype)
pos_ip_adapter_extensions.append(ip_adapter_extension)
ip_adapter_extension = XLabsIPAdapterExtension(
model=ip_adapter_model,
image_prompt_clip_embed=neg_image_prompt_clip_embed,
weight=ip_adapter_field.weight,
begin_step_percent=ip_adapter_field.begin_step_percent,
end_step_percent=ip_adapter_field.end_step_percent,
)
ip_adapter_extension.run_image_proj(dtype=dtype)
neg_ip_adapter_extensions.append(ip_adapter_extension)
return pos_ip_adapter_extensions, neg_ip_adapter_extensions
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[ModelPatchRaw, float]]:
loras: list[Union[LoRAField, ControlLoRAField]] = [*self.transformer.loras]
if self.control_lora:
# Note: Since FLUX structural control LoRAs modify the shape of some weights, it is important that they are
# applied last.
loras.append(self.control_lora)
for lora in loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
context.util.flux_step_callback(state)
return step_callback