|
| 1 | +<!--- |
| 2 | +Copyright 2021 The HuggingFace Team. All rights reserved. |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +--> |
| 16 | + |
| 17 | +# Image classification examples |
| 18 | + |
| 19 | +The following examples showcase how to fine-tune a `ViT` for image-classification using PyTorch. |
| 20 | + |
| 21 | +## Using datasets from 🤗 `datasets` |
| 22 | + |
| 23 | +Here we show how to fine-tune a `ViT` on the [beans](https://huggingface.co/datasets/beans) dataset. |
| 24 | + |
| 25 | +👀 See the results here: [nateraw/vit-base-beans](https://huggingface.co/nateraw/vit-base-beans). |
| 26 | + |
| 27 | +```bash |
| 28 | +python run_image_classification.py \ |
| 29 | + --dataset_name beans \ |
| 30 | + --output_dir ./beans_outputs/ \ |
| 31 | + --remove_unused_columns False \ |
| 32 | + --do_train \ |
| 33 | + --do_eval \ |
| 34 | + --push_to_hub \ |
| 35 | + --push_to_hub_model_id vit-base-beans \ |
| 36 | + --learning_rate 2e-5 \ |
| 37 | + --num_train_epochs 5 \ |
| 38 | + --per_device_train_batch_size 8 \ |
| 39 | + --per_device_eval_batch_size 8 \ |
| 40 | + --logging_strategy steps \ |
| 41 | + --logging_steps 10 \ |
| 42 | + --evaluation_strategy epoch \ |
| 43 | + --save_strategy epoch \ |
| 44 | + --load_best_model_at_end True \ |
| 45 | + --save_total_limit 3 \ |
| 46 | + --seed 1337 |
| 47 | +``` |
| 48 | + |
| 49 | +Here we show how to fine-tune a `ViT` on the [cats_vs_dogs](https://huggingface.co/datasets/cats_vs_dogs) dataset. |
| 50 | + |
| 51 | +👀 See the results here: [nateraw/vit-base-cats-vs-dogs](https://huggingface.co/nateraw/vit-base-cats-vs-dogs). |
| 52 | + |
| 53 | +```bash |
| 54 | +python run_image_classification.py \ |
| 55 | + --dataset_name cats_vs_dogs \ |
| 56 | + --output_dir ./cats_vs_dogs_outputs/ \ |
| 57 | + --remove_unused_columns False \ |
| 58 | + --do_train \ |
| 59 | + --do_eval \ |
| 60 | + --push_to_hub \ |
| 61 | + --push_to_hub_model_id vit-base-cats-vs-dogs \ |
| 62 | + --fp16 True \ |
| 63 | + --learning_rate 2e-4 \ |
| 64 | + --num_train_epochs 5 \ |
| 65 | + --per_device_train_batch_size 32 \ |
| 66 | + --per_device_eval_batch_size 32 \ |
| 67 | + --logging_strategy steps \ |
| 68 | + --logging_steps 10 \ |
| 69 | + --evaluation_strategy epoch \ |
| 70 | + --save_strategy epoch \ |
| 71 | + --load_best_model_at_end True \ |
| 72 | + --save_total_limit 3 \ |
| 73 | + --seed 1337 |
| 74 | +``` |
| 75 | + |
| 76 | +## Using your own data |
| 77 | + |
| 78 | +To use your own dataset, the training script expects the following directory structure: |
| 79 | + |
| 80 | +```bash |
| 81 | +root/dog/xxx.png |
| 82 | +root/dog/xxy.png |
| 83 | +root/dog/[...]/xxz.png |
| 84 | + |
| 85 | +root/cat/123.png |
| 86 | +root/cat/nsdf3.png |
| 87 | +root/cat/[...]/asd932_.png |
| 88 | +``` |
| 89 | + |
| 90 | +Once you've prepared your dataset, you can can run the script like this: |
| 91 | + |
| 92 | +```bash |
| 93 | +python run_image_classification.py \ |
| 94 | + --dataset_name nateraw/image-folder \ |
| 95 | + --train_dir <path-to-train-root> \ |
| 96 | + --output_dir ./outputs/ \ |
| 97 | + --remove_unused_columns False \ |
| 98 | + --do_train \ |
| 99 | + --do_eval |
| 100 | +``` |
| 101 | + |
| 102 | +### 💡 The above will split the train dir into training and evaluation sets |
| 103 | + - To control the split amount, use the `--train_val_split` flag. |
| 104 | + - To provide your own validation split in its own directory, you can pass the `--validation_dir <path-to-val-root>` flag. |
| 105 | + |
| 106 | + |
| 107 | +## Sharing your model on 🤗 Hub |
| 108 | + |
| 109 | +0. If you haven't already, [sign up](https://huggingface.co/join) for a 🤗 account |
| 110 | + |
| 111 | +1. Make sure you have `git-lfs` installed and git set up. |
| 112 | + |
| 113 | +```bash |
| 114 | +$ apt install git-lfs |
| 115 | +$ git config --global user.email "[email protected]" |
| 116 | +$ git config --global user.name "Your Name" |
| 117 | +``` |
| 118 | + |
| 119 | +2. Log in with your HuggingFace account credentials using `huggingface-cli` |
| 120 | + |
| 121 | +```bash |
| 122 | +$ huggingface-cli login |
| 123 | +# ...follow the prompts |
| 124 | +``` |
| 125 | + |
| 126 | +3. When running the script, pass the following arguments: |
| 127 | + |
| 128 | +```bash |
| 129 | +python run_image_classification.py \ |
| 130 | + --push_to_hub \ |
| 131 | + --push_to_hub_model_id <name-your-model> \ |
| 132 | + ... |
| 133 | +``` |
0 commit comments