You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
bitsandbytes - Linear8bitLt integration into transformers models (#17901)
* first commit
* correct replace function
* add final changes
- works like charm!
- cannot implement tests yet
- tested
* clean up a bit
* add bitsandbytes dependencies
* working version
- added import function
- added bitsandbytes utils file
* small fix
* small fix
- fix import issue
* fix import issues
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* refactor a bit
- move bitsandbytes utils to utils
- change comments on functions
* reformat docstring
- reformat docstring on init_empty_weights_8bit
* Update src/transformers/__init__.py
Co-authored-by: Sylvain Gugger <[email protected]>
* revert bad formatting
* change to bitsandbytes
* refactor a bit
- remove init8bit since it is useless
* more refactoring
- fixed init empty weights issue
- added threshold param
* small hack to make it work
* Update src/transformers/modeling_utils.py
* Update src/transformers/modeling_utils.py
* revmoe the small hack
* modify utils file
* make style + refactor a bit
* create correctly device map
* add correct dtype for device map creation
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* apply suggestions
- remove with torch.grad
- do not rely on Python bool magic!
* add docstring
- add docstring for new kwargs
* add docstring
- comment `replace_8bit_linear` function
- fix weird formatting
* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add
* few modifs
- typo doc
- force cast into float16 when load_in_8bit is enabled
* added colab link
* add test architecture + docstring a bit
* refactor a bit testing class
* make style + refactor a bit
* enhance checks
- add more checks
- start writing saving test
* clean up a bit
* male style
* add more details on doc
* add more tests
- still needs to fix 2 tests
* replace by "or"
- could not fix it from GitHub GUI
Co-authored-by: Sylvain Gugger <[email protected]>
* refactor a bit testing code + add readme
* make style
* fix import issue
* Update src/transformers/modeling_utils.py
Co-authored-by: Michael Benayoun <[email protected]>
* add few comments
* add more doctring + make style
* more docstring
* raise error when loaded in 8bit
* make style
* add warning if loaded on CPU
* add small sanity check
* fix small comment
* add bitsandbytes on dockerfile
* Improve documentation
- improve documentation from comments
* add few comments
* slow tests pass on the VM but not on the CI VM
* Fix merge conflict
* make style
* another test should pass on a multi gpu setup
* fix bad import in testing file
* Fix slow tests
- remove dummy batches
- no more CUDA illegal memory errors
* odify dockerfile
* Update docs/source/en/main_classes/model.mdx
* Update Dockerfile
* Update model.mdx
* Update Dockerfile
* Apply suggestions from code review
* few modifications
- lm head can stay on disk/cpu
- change model name so that test pass
* change test value
- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging
* modify installation guidelines
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* replace `n`by `name`
* merge `load_in_8bit` and `low_cpu_mem_usage`
* first try - keep the lm head in full precision
* better check
- check the attribute `base_model_prefix` instead of computing the number of parameters
* added more tests
* Update src/transformers/utils/bitsandbytes.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit
* improve documentation
- fix typos for installation
- change title in the documentation
Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Michael Benayoun <[email protected]>
Another way to minimize the memory impact of your model is to instantiate it at a lower precision dtype (like `torch.float16`).
108
+
Another way to minimize the memory impact of your model is to instantiate it at a lower precision dtype (like `torch.float16`) or use direct quantization techniques as described below.
109
109
110
110
### Model Instantiation dtype
111
111
@@ -133,6 +133,45 @@ model = AutoModel.from_config(config)
133
133
134
134
Due to Pytorch design, this functionality is only available for floating dtypes.
135
135
136
+
### `bitsandbytes` integration for Int8 mixed-precision matrix decomposition
137
+
138
+
From the paper `GPT3.int8() : 8-bit Matrix Multiplication for Transformers at Scale`, we suport HuggingFace 🤗 integration for all models in the Hub with few lines of code.
139
+
For models trained in half-precision (aka, either `float16` or `bfloat16`) or full precision. This method aims to reduce `nn.Linear` size by 2 (if trained in half precision) or by 4 if trained in full precision, without affecting too much quality by operating on the outliers in half-precision.
140
+
This technique is useful and works well for billion scale models (>1B parameters) therefore we advice you to use it only for models of that scale. This method has been tested for 2-billion to 176-billion scale models and supports only PyTorch models.
Int8 mixed-precision matrix decomposition works by separating a matrix multiplication into two streams: (1) and systematic feature outlier stream matrix multiplied in fp16 (0.01%), (2) a regular stream of int8 matrix multiplication (99.9%). With this method, int8 inference with no predictive degradation is possible for very large models (>=176B parameters).
145
+
Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning).
146
+
147
+
Note also that you would require a GPU to run mixed-8bit models as the kernels has been compiled for GPUs only. Make sure that you have enough GPU RAM to store the quarter (or half if your model is natively in half precision) of the model before using this feature.
148
+
149
+
Below are some notes to help you use this module, or follow this demo on Google colab: [](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing)
150
+
151
+
#### Requirements
152
+
153
+
- Make sure you run that on a NVIDIA GPU that supports 8-bit tensor cores (Turing or Ampere GPUs - e.g. T4, RTX20s RTX30s, A40-A100). Note that previous generations of NVIDIA GPUs do not support 8-bit tensor cores.
154
+
- Install the correct version of `bitsandbytes` by running:
The implementation supports multi-GPU setup thanks to `accelerate` as backend. If you want to control the GPU memory you want to allocate for each GPU, you can use the `max_memory` argument as follows:
167
+
(If allocating `1GB` into GPU-0 and `2GB` into GPU-1, you can use `max_memory={0:"1GB", 1:"2GB"}`)
0 commit comments